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PREFACE. 

This  book  has  been  written  after  many  years'  experience  in 
teaching  Theoretical  Mechanics  to  students  of  a  great  variety 

of  ages  and  attainments. 

I  attach  great  importance  to  the  value  of  carefully  selected 

and  carefully  explained  examples,  and  throughout  the  book 

numerous  examples  will  be  found  worked  out  and  accompanied 

by  notes  on  the  processes  employed  in  their  solution.  In 

addition  to  these,  there  are  nearly  five  hundred  questions  for 

exercise.  Many  of  these  questions  are  taken  from  examination 

papers,  the  source  being  always  clearly  stated. 

In  the  teaching  of  any  branch  of  science  the  value  of  experi- 

mental illusti'ations  has  now  come  to  be  fully  recognized  ;  and 
I  have  described  upwards  of  forty  experiments  which  may  all 
be  performed  by  teacher  or  student  with  the  help  of  very 

inexpensive  apparatus.  At  the  same  time  more  elaborate 

apparatus  may  be  used,  when  it  is  available,  to  illustrate  much 

of  the  subject  matter. 

The  book  will  be  found  to  contain  all  the  subjects  in  the 

syllabus  of  the  Elementary  Stage  of  Theoretical  Mechanics  of 

Solids  of  the  Board  of  Education,  South  Kensington  ;  while,  to 

increase  its  usefulness  and  to  adapt  it  to  the  requirements  of 

students  for  other  examinations,  the  theoretical  proofs  of  many 

propositions  have  been  added. 

It  may  be  read  without  any  mathematical  attainments  be- 
yond an  ability  to  solve  easy  algebraical  equations,  except  that 

in  a  few  instances  easy  quadratics  and  the  properties  of  similar 

triangles  have  been  employed. 

My  thanks  are  due  to  Prof.  E.  A.  Gregory  and  Mr.  A.  T. 

Simmons,  B.Sc,  who  have  helped  me  by  many  valuable  sug- 
gestions during  the  preparation  of  the  book. 

W.  T.  A.  EMTAGE. 

London,  Jul^,  1900. 
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CHAPTER  I. 

FORCE.     PARALLELOGRAM  AND  TRIANGLE  OF  FORCES. 

Force. — Suppose  a  piece  of  wood  is  placed  on  a  smooth  liori- 
zontal  table,  or,  better  still,  to  float  on  water,  so  that  it  will 

yield  to  the  application  of  the  slightest  push  or  pull  in  any 
direction.  Now  let  two  strings  be  attached  to  it,  and  let  these 

both  be  pulled  out  horizontally.  As  a  rule  the  wood  will  yield 
to  the  combined  effect  of  the  pulls  in  the  strings,  or  the  two 

forces  applied  to  it,  and  will  begin  to  move.  It  is  easy  to 
imagine  in  a  general  way  what  will  be  the  effect  produced. 

(1)  If  the  two  pulls  are  inclined  to  one  another,  the  wood  will 

begin  to  move  off  along  a  line  lying  in  the  angle  between  them. 
(2)  If  they  are  opposite  to  one  another,  the  wood  will  move  in 

the  direction  of  the  greater  pull. 

(3)  The  wood  may  begin  to  turn  instead  of  moving  away 

bodily,  or  even  perhaps  as  well  as  moving  away  bodily. 
Suppose  the  two  pulls  to  be  equal  to  one  another,  that  is,  so 

that  the  tensions  in  the  two  strings  are  equal,  and  suppose  that 
they  act  in  opposite  directions  along  parallel  straight  lines,  not 
along  the  same  straight  line.  The  combined  effect  of  these  two 

pulls  will  be  to  turn  the  wood  round  without  moving  it  away 
bodily. 

Figures  1,  2,  ,3  represent  these  three  cases.  The  arrow-heads 
P  and  Q  denote  the  pulls  of  the  strings  ;  and  M  denotes  the 
motion  of  the  wood. 

Now  in  certain  circumstances  the  wood  will  not  move  at  all. 

Let  us  consider  what  these  are.  The  two  pulls  must  be  along 

the  same  straight  line  ;  that  is,  the  first  string,  the  line  joining 
E.s.  A  (5 
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the  two  points  of  attachment,  and  the  second  string  must  be  all 

^^ 

Fig.  3. 

Fig.  1. 

in  one  straight  line  :  the  two  pulls  must  be  equal  to  one  another : 
they  must  act  in  opposite  senses. 
It  is  only  under  these  conditions 
that  the  wood  will  remain  at  rest. 

And,  further,  whenever  these  con- 
ditions are  fulfilled,  we  may  be  sure 

that  the  combined  effect  of  the  two 

forces  acting  on  the  wood  will  be 
nothing. 

In  what  we  have  just  considered 
the  pulls  in  the  strings  are  examples  of  mechanical  forces.  Such 

forces  are  produced  in  numerous  ways  ;  and  in  general  we  may 
say  : 

A  fcyrce  is  that  which  moves,  or  tends  to  move,  a  body,  or  alters, 
or  tends  to  alter,  its  state  of  motion. 

Equilibrium. — If  a  body  is  acted  on  by  a  set  of  forces  in  such 
a  manner  that  it  does  not  move  it  is  said  to  be  in  equilibrium. 

Sometimes  the  forces  are  spoken  of  as  being  in  equilibrium, 
or  are  said  to  form  a  system  in  equilibrium  with  each  other,  this 

meaning  that  their  combined  effect  on  any  body  on  which  they 

may  be  acting  is  nothing. 

Conditions  for  Equilibrium. — We  have  just  met  with  an 
example  of  forces  in  equilibrium,  the  case  in  which  the  forces 

are  two  in  number.  Let  us  now  state,  in  general  terms,  the 
conditions  which  must  necessarily  hold  when  two  forces  are  in 

equilibrium,  and  which  are  suffi^cient  to  ensure  that  the  forces 
shall  be  in  equilibrium.  The  conditions  may  thus  be  stated  to 

be  necessary  and  sufficient. 
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In  saying  that  they  are  necessary,  we  say  that  if  we  know 
that  the  forces  are  in  equilibrium,  the  conditions  must  hold,  or 

must  necessarily  hold  ;  and  in  saying  that  they  are  sufficient, 
we  say  that  if  the  conditions  are  known  to  hold,  the  forces  must 
be  in  equilibrium,  or  the  conditions  suffice  to  ensure  equilibrium. 
It  should  be  remembered,  then,  that  when  conditions  are  said 
to  be  necessary  and  sufficient,  two  distinct  statements  are  made  : 

in  each  of  them  we  know  something,  and  something  else  follows 
as  a  result ;  and  what  we  know  in  one  case  is  what  follows  in 

.  the  other,  and  vice  versa.  The  two  statements,  or  propositions, 
are  thus  converses  of  each  other.     We  may  now  say  that 

The  necessary  and  sufficient  conditions  between  two  forces  in 
equilibritmi  are  that  they  shoidd  be  equal,  and  should  act  in 

opposite  directions  along  the  same  straight  line. 
Thus,  in  the  case  of  the  wood  pulled  by  two  strings,  when  we 

say  what  conditions  are  necessary,  we  mean  that  if  the  wood 

acted  on  by  the  two  pulls  does  not  move,  the  pulls  must  be  equal 
and  act  oppositely  along  the  same  straight  line  ;  and  when  we 
say  what  conditions  are  sufficient,  we  mean  that  if  the  pulls  are 
equal  and  act  oppositely  along  the  same  straight  line,  the  wood 
will  not  move. 

It  is  important  to  understand  this  about  necessary  and  suffi- 
cient conditions,  because  it  frequently  happens  that,  in  a  case  of 

this  sort,  the  two  sets  of  conditions  are  the  same,  and  we  thus 

have  a  compact  way  of  stating  what  they  are. 

Transmissibility  of  Force.— We  have  seen  that  the  force  P 
balances  another  force  Q,  if  it  is  equal  to  Q  and  acts  along  the 
same  straight  line  in  the  opposite  sense.  And  this  is  entirely 

independent  of  the  point  of  application  of  the  force  P,  so  long  as 
it  is  some  point  of  the  body  on 
which  the  forces  act,  and  is  in  the 

straight  line  in  which  Q  acts. 
If,  for  instance,  P  is  a  pull  due 

to  a  string,  the  end  of  the  string 

may  be  attached  to  any  point  in 

the  straight  line  of  Q's  action,  and 
then  if  P  pulls  in  exactly  the  oppo- 

site direction  to  Q,  and  the  forces  are  equal,  no  motion  will  be 

produced  in  the  body. 
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It  follows  that  we  may,  for  statical  purposes,  that  is,  so  far  as 
tendency  to  move  a  body  is  concerned,  suppose  a  force  to  act  at 
any  point  we  please  in  its  line  of  action. 

This  is  called  the  principle  of  the  Transmissibility  of  Force. 

Tension  of  Strings. — We  have  seen  that  a  force  may  be 
caused  to  act  on  a  body  by  attaching  a  string  to  it  and  pulling 
the  string,  as,  for  instance,  with  the  hand.  The  pull  exerted  by 
the  hand  is  transmitted  along  the  string,  and  is  applied  to  the 
body.  The  string  is  said  to  be  in  a  state  of  tension.  The  pull  all 

along  its  whole  length,  or  the  force  which  any  piece  of  it  exerts  on 
the  next  piece,  is  the  same,  being  equal  to  the  force  applied  by 
the  hand.  This  pull,  which  is  exerted  throughout  the  length  of 

the  string,  is  called  the  tension  of  the  string  ;  and  we  may  say 
that  the  force  acting  on  the  body  is  the  tension  of  the  string. 
A  pull  exerted  by  the  hand  in  this  way  would  not  be  a 

definite  or  constant  force. 

A  steady  force  of  a  definite  magnitude  may  be  obtained  in 
various  ways. 

If  a  body  is  tied  to  the  end  of  a  string  and  hangs  steadily 

from  it,  it  produces  by  its  weight  a  constant  pull  along  the 
string,  of  a  definite  magnitude. 

If  the  string  passes  round  a  smooth  pulley,  that  is,  one  which 

turns  quite  readily  on  its  axle,  the  pull  throughout  the  string 
will  still  be  the  same  as  in  the  vertical  portion  of  it  which  is 
immediately  above  the  body. 

Definite  Forces. — An  elastic  string,  such  as  an  indiarubber 
band,  may  be  used  to  obtain  a  steady  force.  The  pull  necessary 
to  stretch  out  such  a  string  by  a  given  amount  depends  on  the 
amount  of  stretching.  Thus,  if  one  end  of  such  a  string  be 

attached  to  a  body,  and  the  string  be  pulled  out  by  a  force 

applied  to  the  other  end  till  a  given  amount  of  stretching  is 
produced,  a  definite  force  will  act  on  the  body  depending  on  the 
amount  of  stretching  produced  in  the  string. 

If  we  suspend  the  string  by  one  end,  and  hang  at  the  other 
end  various  weights,  1,  2,  3,  etc.,  ounces,  it  will  be  found  that 
the  amounts  by  which  these  stretch  the  string  are  approximately 

proportional,  and  1,  2,  3,  etc.  Thus,  the  pull  in  the  string  not 
only  depends  on,  but  may  be  taken  as  proportional  to,  the 
amount  by  which  it  is  stretched. 
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A  coiled  spiral  spring  behaves  in  the  same  way  as  an  elastic 

string.  The  pull  which  stretches  it  is  proportional  to  the 

stretching  produced.  Such  a  spring  may  thus  be  used  to  indi- 
cate forces  by  observing  the  stretching  produced.  This  is  done 

in  the  case  of  the  spring-balance. 

Experiment  L — Take  a  band  of  rubber  5  or  6  inches  long,  and 
tie  strings  to  its  two  ends.  Attach  one  end  to  a  fixed  point  so  that 
the  band  hangs  vertical.  Measure  the  length  between  the  two  points 
of  the  band  to  which  the  strings  are  attached.  Now  hang  on  it 
various  weights,  such  as  10,  20,  iiO,  40,  50  grams.  Measure  the 
corresponding  stretched  length  in  each  case,  and  so  determine 
the  stretching  which  each  weight  produces.  These  shoiild  be 
approximately  proportional  to  the  stretching  weights. 

The  weights  used  will,  of  course,  depend  on  the  strength  of  the 
band  ;  the  heaviest  should  not  be  great  enough  to  injure  or  per- 

manently elongate  it. 
If  the  shape  of  the  weights  will  not  allow  them  to  be  readily 

attached  to  the  string,  a  pan  must  be  used  into  which  to  put  them  ; 
and  the  pan  may  be  loaded  with  small  pieces  of  metal  or  other 
material  to  bring  it  up  to  the  weight  of  the  smallest  weight.  Thus, 
if  we  are  using  ounce  weights,  the  pan  may  be  loaded  to  make  it 
weigh  one  ounce. 

Experiment  2. — The  same  experiment  may  be  performed  with  a 
spiral  spring  ;  and  it  will  again  be  found  that  the  elongations  pro- 

duced are  approximately  proportional  to  the  weights  used.  If  the 
coils  of  the  spring  lie  in  contact  with  each  other  to  start  with, 
some  force  may  be  required  to  make  them  begin  to  separate.  Then 
the  elongations  are  proportional  to  the  additional  weights  used. 

Experiment  3. — Observe  the  stretching  produced  in  a  rubber 
band  or  a  spiral  spring  by  a  certain  weight.  Fix  a  pulley  that 
will  run  very  smoothly.  Pass  a  string  over  it :  hang  the  weight 
on  one  side  and  support  it  by  means  of  the  band  or  spring  attached 
to  the  other  end  of  the  string  passing  over  the  pulley.  Notice  the 
elongation  produced.  This  should  be  about  the  same  as  in  the  first 
case  when  the  pulley  was  not  used. 
Draw  the  weight  down  a  little,  thus  slightly  further  stretching 

the  band,  and  allow  it  to  go  back  slowly  to  its  position  of  rest: 
and  again  raise  it  a  little  and  allow  it  to  come  down  to  its  position 
of  rest.  It  will  probably  be  found  that  these  two  positions  are  not 
quite  the  same,  giving  elongations  of  the  string  that  differ  slightly 
from  each  other  and  from  that  attained  at  first.  This  is  due  to  a 
little  friction  in  the  pulley  which  cannot  be  quite  got  rid  of. 

Note. — For  the  pulleys  used  in  this  and  other  experiments  the 
light  aluminium  pulleys  now  supplied  by  many  makers  of  scientific 
apparatus  will  be  found  very  suitable.  They  can  be  obtained,  for 
instance,  from  Messrs.  Griffin  &  Sons,  Sardinia  Street,  W.C. 
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Measurement  of  Forces. — In  questions  concerning  the  equili- 
brium of  forces,  we  have  frequently  merely  to  consider  the 

ratios  of  forces  to  each  other  ;  but  it  is  also  convenient  to  have 

some  method  of  measuring  forces,  that  is,  some  unit  of  measure- 
ment, in  terms  of  which  we  may  specify  them  by  saying  how 

many  times  any  force  contains  the  unit.  The  unit  most 

frequently  employed  in  such  questions  is  the  weight  of  a  pound. 

We  thus  speak  of  a  force  of  two,  three,  etc.,  pounds'  weight. 
Notice  carefully  that  the  weight  of  a  body  means  the  force  with 
which  the  earth  attracts  it  to  itself  in  a  vertically  downward 
direction  :  the  weight  of  a  pound  is  the  force  of  attraction 

which  acts  on  a  definite  quantity,  a  pound,  of  matter.  And  it 

is  accurate  to  speak  of  a  force  of  three  pounds^  weighty  or,  as  it  is 
sometimes  written,  a  force  of  three  lbs.'  weight.  Occasionally,  how- 

ever, such  an  expression  as  a  force  of  three  pounds  is  met  with. 

This  is  used  for  the  sake  of  brevity  ;  but  cannot  be  altogether 

justified.  It  is  customary  in  ordinary  language,  and  even  in 

mechanics,  to  speak  of  a  body  of  a  definite  weight  as  a  iDeight. 
Thus  a  weight  of  10  lbs.  may  mean  a  body,  a  definite  quantity  of 
matter,  and  not  a  force  at  all.  No  confusion  will  arise,  as  a 
rule,  since  the  context  indicates  what  is  meant. 

The  gram  is  a  mass  used  in  the  French  or  Metric  System  of 

measures.  It  is  about  j^th  of  a  pound.  A  force  is  often 

expressed  in  grams'  weight. 
Graphic  Representation  of  Forces.— It  is  found  to  be  very 

convenient  to  have  a  means  of  representing  forces  in  diagrams. 

They  are  represented  by  straight  lines. 
In  the  first  place  a  straight  line  may  be  drawn  to  represent 

the  actual  line  along  which  the  force  acts.  If,  for  instance,  the 

force  is  a  pull  in  a  string,  the  line  may  be  taken  to  represent,  or 
to  be  a  picture  of,  the  string. 

It  is,  however,  often  sufficient,  and  even  more  convenient,  to 

take  a  straight  line  to  represent  the  direction,  but  not  the 
actual  line  of  action  of  the  force,  so  that  it  is  then  drawn 

parallel  to  the  line  along  which  the  force  acts. 

In  this  latter  case  the  line  would  represent  the  force  in 
direction  :  and  in  the  former  case  in  line  of  action  or  position 
as  well  as  in  direction. 

In  either  case  it  is  further  necessary  to  indicate  the  sense,  or 
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the  one  of  the  two  ways  along  the  straight  line  in  which  the 
force  in  question  acts.  This  is  frequently  done,  as  we  have 

done  it  already,  in  Figs.  1 ,  2,  3,  by  means  of  arrow-heads. 
Lastly,  the  line  may  be  taken  to  represent  the  force  in  magni- 

tude, according  to  some  convenient  scale.  Thus,  we  may  agree 

to  represent  each  pound's  weight  by  one  inch  ;  and  the  line 
would  be  drawn  as  many  inches  in  length  as  there  are  pounds' 
weight  in  the  force.  The  scale  on  which  to  represent  the  forces 
would,  of  course,  be  chosen  according  to  the  magnitudes  of  the 
forces  in  question,  and  the  size  of  the  diagram  that  it  is  desired 
to  obtain. 

We  thus  see  how  a  force  may  be  represented,  graphically,  by 
means  of  a  straight  line  in  (1)  direction^  (2)se?isey  (3)  li7ie  of  action, 

(4)  magyiitude. 
These  four  points  or  particulars,  which  can  all  be  represented 

on  a  diagram,  make  up  the  complete  specification  of  a  force. 

Point  of  Application  is  immateriaL— It  should  be  noticed 
that  nothing  is  here  said  about  the  actual  point  to  which  the 

force  is  applied,  because  this  is  immaterial.  If  we  know  the 

straight  line  along  which'  a  force  acts,  it  would  produce  exactly 
the  same  effect  in  moving,  or  tending  to  move,  the  body  on 
which  it  acts,  no  matter  to  what  particular  point  in  this  straight 

line  it  is  applied.  Of  course,  if  the  body  moves,  the  line  of 
action  may  shift  into  a  position  depending  on  the  point  of 
application.  But,  as  long  as  the  line  of  action  is  given,  the 
point  of  application  is  immaterial. 

If  we  say  that  a  force  is  represented  by  a  straight  line  AB, 

the  manner  of  naming  the  straight  line  indicates  the  required 
sense,  which  need  not  then  be  more  particularly  specified  ;  the 
sense  from  ̂   to  5  is  indicated.  In  this  way  of  looking  at  the 

matter,  we  may  suppose  that  the  two  senses  along  a  straight 
line  are  two  different,  opposite,  directions  ;  and  so  we  may 
leave  out  the  idea  of  sense  altogether,  the  complete  direction  of 

the  force  being  specified  by  the  way  of  drawing  the  line,  and  the 
way  of  naming  it.  Also,  as  has  already  been  said,  for  many 

purposes  it  is  not  necessary  to  indicate  the  actual  line  along 
which  a  force  acts,  but  merely  its  direction.  In  these  cases  then, 
we  indicate  a  force  sufficiently  if  we  represent  it  by  a  straight 

line  in  direction  and  in  magnitude. 
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In  the  figure  let  F  denote  a  force  of  5  pounds'  weight.  Let 
us  choose  a  scale  of  ̂ -in.  to  a  pound's 
weight.  Draw  a  straight  line  AB 
parallel  to  the  line  of  action  of  F, 

and  make  AB  Ij-ins.  long.  Then 

the  force  F  is  represented  in  direc- 
"  tion  and  magnitude  by  AB. 

Jce°-in-^h4ctionTd"ma|n;        Note  that  F  is  not  represented  in 
*"de.  position  or   line   of   action   by  AB. 
Nor  is  F  represented  in  direction  by  BA,  but  by  AB. 

Resultant. — If  a  given  set  of  forces  can  be  replaced  by  a 
single  one,  this  is  called  their  resultant.  The  resultant  is  thus  a 

force  which  produces  exactly  the  same  eflect  as  the  given  forces. 

It  is  clear  that  it  must  be  specified,  not  only  in  magnitude,  but 
in  all  particulars.  Thus,  if  given  forces  have  for  resultant  a 
force  of  a  certain  magnitude  acting  in  a  certain  manner,  a  force 

of  the  same  magnitude  acting  along  some  other  line  would  not 
be  their  resultant. 

Equilibrant. — If  a  set  of  forces  can  be  held  in  equilibrium  by 
a  single  one,  this  is  called  their  equilibrant.  The  force  which 
will  hold  the  given  forces  in  equilibrium  will  clearly  also  hold 
their  resultant  in  equilibrium,  since  the  resultant  produces  just 

the  same  effect  as  the  given  forces.  Since  the  resultant  and  the 
equilibrant  just  balance  each  other,  it  follows  that  they  must  be 

equal  forces,  and  act  in  opposite  dii-ections  along  the  same 
straight  line.     That  is,  they  differ  in  nothing  but  sense. 

We  now  come  to  a  very  important  proposition,  by  means  of 
which  we  can  determine  the  resultant  of  any  two  forces  which 

Q  are  inclined  to  each  other,  that  is, 
whose  lines  of  action  are  not  paral- 

lel but  intersect.  This  proposition 
is  called  the  Parallelogram  of 

Forces.  It  foi'ms  the  basis  of  the 
science  of  Statics.  It  may  be  stated 
as  follows  : 

O  A  Parallelogram   of  Forces.—//" 
Fig.  6.-Parallelogram  of  forces.  ^^^  ̂ ^^^^^  ̂ ^^  rep-esented  in  direc- 

tion and  magnitude  hy  the  two  straight  lines  OA,  OB  drawn 

from  the  point  0,  then  their  resultant  will  he  represented  in  direc- 
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tio7i  and  magnitude  hy  the  diagonal  OC  of  the  parallelogram 
OACB  described  on  OA,  OB  as  two  adjacent  sides. 

Experimental  Verification. — First  Method. — This  proposition 
may  be  verified  experimentally  in  the  following  way.  Three 
fine  strings  are  knotted  together  at  the  point  C,  and  to  their 
other  ends  known  weights,  P, 

Q,  R  are  attached.  The  strings 

P,  Q  are  passed  over  smooth 

pulleys  A,  B,  so  that  the  ten- 
sion throughout  either  of  these 

strings  is  then  uniform,  and 
equal  to  the  weight  of  the  body 
at  the  end  of  it.  Thus  at  C 

three  forces  are  acting  along 

the  strings  equal  to  the  three 

weights.  Now,  by  placing  a 

black-board  or  a  sheet  of  paper 
close  behind  the  strings  (a  very 

convenient  plan  being  to  attach 
the  pulleys  to  such  a  board), 
distances     CE,     CD    may     be 

marked  off  on  it  just  behind  p,SSd„^am'oir4"f '  '""°'"°"  °' 
the  strings  to  represent,  accord- 

ing to  a  chosen  scale,  the  weights  of  P  and  Q.     Complete  the 
parallelogram  CEFD,  and  draw  the  diagonal  CF. 

P  and  Q  along  CE  and  CD  are  held  in  equilibrium  by  R 
vertically  downwards  ;  so  that  we  know  that  their  resultant  is 

R  vertically  upwards.  We  have  therefore  to  see  whether  the 

construction  of  the  parallelogram  of  forces  gives  this  result. 

This  construction  gives  CF  as  representing  the  resultant.  CF 

ought  therefoi'e 
(1)  to  be  vertical,  and 

(2)  by  its  length  to  represent  R  on  the  same  scale  as  CE  and 
CD  represent  P  and  Q. 

If  the  construction  is  carefully  made,  CF  will  be  found  to 
satisfy  these  conditions. 

Second  Method. — The  experiment  may  also  be  carried  out  by 
using  spring  balances  instead  of  pulleys  and  known  weights. 

Two  such  balances  are  used  in  the  arms  CE.,  CD  being  fastened 
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to  pegs  at  A  and  B.  A  known  weight  may  be  used  at  R,  or  a 

third  balance  may  be  attached  to  the  string  CR,  and  pulled  out 
to  give  any  desired  indication.  The  string  CR  will  then  not 

necessarily  be  vertical.  But  CF  must  be  in  the  production  of 

the  line  of  this  string,  and  represent  by  its  length  the  indica- 
tion of  the  balance  in  CR  on  the  same  scale  as  CE  and  CD 

represent  the  pulls  shown  by  the  other  two  balances. 

Experiment  4. — Attach  two  smooth  pulleys  to  the  top  corners  of 
a  black-board,  and  fix  the  black-board  vertical.  Tie  three  strings 
together  by  an  end  of  each,  and  pass  two  of  them  over  the  pulleys, 
letting  the  third  hang  down.  To  the  other  ends  of  the  strings 
attach  weights.  These  must  be  so  chosen  that  the  knot  of  the 
strings  will  come  to  rest  at  some  point  in  front  of  the  board.  Any 
combination  of  weights  whatever  will  not  do,  as  in  some  cases  the 
knot  would  run  over  a  pulley.  Weights  20  and  30  grams  at  the 
sides  and  40  in  the  middle  may  be  used.  Note  the  point  at  which 
the  knot  rests.  On  account  of  the  friction  of  the  pulleys  it  will  be 
found  that  there  is  a  little  range,  a  small  area,  at  any  point  of  which 
the  knot  may  be  made  to  rest.  The  best  position  for  it  is  about  the 
mean  position  of  this  range,  or  centre  of  the  area. 

From  this  point  draw  straight  lines  just  behind  the  three  strings. 
Mark  off  along  the  lines  lengths  to  represent  the  forces  acting  in  the 
strings.  With  a  fair  sized  black-board,  and  the  weights  mentioned, 
3  inches  may  be  taken  for  each  10  grams'  weight.  So  that  the 
lengths  would  be  6,  9,  12  inches. 

Construct  a  parallelogram  on  the  lines  6  and  9  inches,  and  draw 
its  diagonal  from  the  position  of  the  knot.  This  should  represent 
the  resultant  of  the  weights  of  the  20  and  30  grams.  It  should 

therefore  represent  a  force  equal  and  opposite  to  the  40  grams'  weight which  balances  the  other  two. 
Thus,  the  diagonal  should  be  in  a  straight  line  with  the  12  inch 

line,  and  should  be  12  inches  long. 

Experiment  5. — Take  three  rubber  bands  and  tie  their  ends  to 
six  strings.  Fasten  three  of  the  strings  together  in  a  knot,  and  pull 
out  the  other  strings  so  as  to  stretch  out  the  bands  over  a  piece  of 
drawing  paper  on  a  drawing-board,  fastening  the  other  ends  with 
the  bands  in  the  stretched  positions. 

The  tensions  in  the  bands  are  three  forces  in  equilibrium  acting 
along  the  strings  which  meet  at  the  knot.  Draw  three  straight 
lines  out  from  the  position  of  the  knot  to  mark  the  directions  of  the 
strings.  Carefully  measure  the  stretched  lengths  of  the  bands. 
Remove  the  bands  and  find  what  weights  thej^  must  carry  to  stretch 
them  to  the  same  lengths.  These  denote  the  forces  that  acted  along 
the  strings.  Measure  off  along  the  lines  of  the  strings  portions  pro- 

portional to  these  forces.  Thus,  if  the  largest  weight  is  25  grams, 

on  an  ordinary  drawing-board  a  scale  of  1  inch  to  5  grams'  weight 
will  probably  be  found  suitable. 
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Cojiistruct  the  parallelogram  on  two  of  the  lines,  and  find  its 
diagonal  through  the  knot.  This  should  be  equal  and  opposite  to 
the  third  line. 

Measurement  of  Angles.— In  assigning  the  relative  positions 
of  two  forces,  or  of  two  straight  lines,  the  angle  between  them  is 

usually  specified  in  degrees  and  fractions  of  a  degree. 
Let  A  CBD  be  a  circle  with  centre  0. 

Imagine  the  circumference  to  be 
divided  up  into  360  equal  parts.  The 

straight  lines  joining  0  to  the  points 
of  division  form  360  equal  little  angles. 
Each  of  these  angles  is  a  degree. 

It  is  clear  that  360  such  degrees  fill 

up  the  whole  space  round  0  ;  and  if 
AOB,  COD  are  two  diameters  at  right 
angles  to  each  other,  each  of  the  four 

right  angles  at  0  contains  90  degrees. 

We  may  say  that  a  degree  is  xy^th.  part  of  a  right  angle. 
Thus,  if  the  right  angle  were  divided  into  90  equal  little  angles, 
each  would  be  a  degree. 

The  size  of  the  degree  does  not  depend  at  all  on  the  size  of 
the  circle  used  to  obtain  it.  The  inclination  of  the  two  straight 
lines  containing  a  degree  would  be  the  same  whatever  the  size 
of  the  circle. 

An  angle  of  one  degree  is  written  1°. 

Thus,  one  right  angle  =  90°. 
Protractors. — The  instrument  used  for  measuring  and  for 

laying  out  angles  is  called  a  protractor.  In  the  figure  two  forms 

of  protractor  are  shown.  In  the  outer  semicii'culai-  one  the 

angles  from  0°  to  180°  are  marked  off  with  the  point  *  as  centre. 
To  measure  an  angle,  the  centre  of  the  protractor  is  placed  at 

the  vertex  of  the  angle,  that  is,  the  point  where  its  lines  meet, 

and  the  line  to  the  mark  corresponding  to  0°  along  one  of  the 
arms  of  the  angle.  The  graduation  coming  over  the  other  arm 
gives  the  required  size. 

Similarly,  to  construct  an  angle  of  given  size,  the  centre  is 

placed  at  the  required  vertex,  and  having  drawn  one  arm,  by 
the  help  of  the  graduations,  the  position  for  the  other  arm  is 
found. 
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The  inner  rectangular  instrument  has  a  marked  point  for 

centre,  and  the  graduations  are  placed  along  its  edges.  Its  use 
is  quite  similar  to  that  of  the  other  one.  It  is  not  calculated  to 

give  such  accurate  results. 

Fig.  9.— Protractors. 

Scales. — For  the  examples  that  will  be  given  here,  a  scale 
marked  in  inches  and  lOths  is  very  useful.  One  marked  in 

8ths  may  be  used,  and  the  results  reduced  when  necessary. 

Lengths  are  sometimes  expressed  in  metres  and  centimetres. 
The  metre  is  the  standard  of  length  in  the  metric  system,  and  is 

about  39  inches.  The  centimetre  is  y^Q  of  a  metre,  and  is  there- 
fore about  f  of  an  inch. 

How  the  Method  of  finding  Resultants  is  applied.— As 
an  example  of  finding  a  resultant  by  means  of  the  parallelogram 
of  forces,  let  us  consider  this  question  : 

Find  the  position  and  magnitude  of  the  resultant  of  two  forces 

of  5  and  6  lbs.  weight,  inclined  at  an  angle  of  65°. 
This  question  may  be  solved  by  accurate  drawing  and  measur- 

ing by  means  of  a  rule  and  protractor  for  the  lengths  and  angles. 
We  must  first  decide  on  a  scale  of  lengths  for  representing  the 
forces,  that  is,  decide  what  length  is  to  be  taken  to  represent 

a  unit  of  force,  or  in  this  case  a  pound's  weight.  It  must  be 
remembered  that  in  solving  a  question  in  this  way,  that  is, 

graphically,  in  order  to  obtain  an  accurate  result,  we  must  use  a 



PARALLELOGRAM  AND  TRIANGLE  OF  FORCES.       13 

pretty  large  scale,  and  draw  pretty  large  figures,  because  a 
length  of  about  10  or  12  inches  can  be  laid  off  and  measured 
with  the  rule  to  greater  proportionate,  or  per  centage,  accuracy 
than  one  of  an  inch  or  two.  In  the  present  case  we  may  use  an 

inch  length  to  denote  a  pound's  weight.  We  should  then  draw 
two  straight  lines  OA,  OB,  6  and  5  inches  long,  making  an  angle 

AOB,  as  measured  by  the  protractor,  equal  to  65".  Completing 
the  parallelogram,  and  drawing  the  diagonal  OC,  it  will  be  easy 

to  find  that,  correct  to  ̂ \yth  of  an  inch  for  length,  and  1°  for 
angular  measure,  OC  is  9*3  inches  long,  and  makes  an  angle  of 
29°  with  OA. 

The  required  result  will  then  be  : 

The  resultant  makes  angles  29°  and  36°  with  the  given  forces, 
and  is  a  force  of  9 '3  lbs.'  weight. 

The  figure  drawn  of  the  size  here  suggested  would  more  than 
fill  a  page  of  this  book. 

The  following  examples  are  intended  to  be  solved  in  the  same 

way,  that  is,  by  means  of  careful  drawing  and  measuring.  The 
results  are  given  approximately.  They  profess  to  be  correct  as 
far  as  they  are  given,  but  not  to  be  quite  exact.  Thus,  in  the 

result  9"3  lbs.'  weight,  given  above,  it  is  understood  that  this  is 
correct  to  the  first  place  of  decimals  ;  and  the  correct  result  is 

nearer  to  9*3  than  to  9*2  or  9*4. 

Exercises  I.  a. 

Find  the  magnitudes  and  positions  of  the  resultants  in  the  follow- 
ing oases  : 

1.  Forces  of  97  and  90  units  inclined  at  134°. 

2.  Forces  of  11  and  6  lbs.'  weight,  making  an  angle  of  66°. 
3.  10  and  17  units  at  right  angles. 

Another  Method  of  finding  a 
Resultant. — The  following  is  an- 

other method  by  which  the  result- 
ant may  be  more  readily  obtained. 

Since  the  diagonals  of  any 
parallelogram  bisect  each  other,  it 
follows  that  if  we  draw  the  line 

AB  and  bisect  it  at  B,  the  re-  ̂ ^^  ̂ o.-Method  of  finding  re^ quired  diagonal   OC  is  equal   to  suitant  of  two  forces. 
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20i),  and  its  direction  is  known  since  it  is  that  of  OD.  It  is 

therefore  not  necessary  to  draw  the  complete  parallelogram  : 
we  need  only  complete  the  triangle  OAB^  in  which  OA,  OB 

represent  the  given  forces,  and  draw  the  median  OD  to  the 

point  of  bisection  of  AB.  OD  then  gives  the  direction  of  the 

required  resultant,  and  this  resultant  is  represented  by  20 D. 

The  Triangle  of  Forces.— In  the  parallelogram  of  forces 

OJ,  OB  represent  two  forces,  and  06' their  resultant.  Therefore 
the  forces  OA^  OB  would  be  neutralized  by  a  force  represented 

by  CO.  Or  the  three  forces  OA,  OB,  CO  acting  at  the  point  0 
are  in  equilibrium. 

Now  these  three  forces  are  completely  represented  by  the 

lines  OA,  OB,  CO',  but  since  AC  is  equal  and  parallel  to  OB, 

^     J  (^^  represents  the  second  force  in 
direction  and  magnitude,  although 

not  in  position. 

Hence  the  two  given  forces  act- 

ing at  0  are  represented  in  direc- 
tion  and  magnitude   by  the  two 

sides  OA,  AC oi  the  triangle  OAC  ■ 
A  and  the  force  which  is  represented 

-Triangle  of  forces  ^^  (jq  neutralizes  them. 
The  three  forces  are  represented  by  the  sides  of  the  triangle 

OAC,  named  the  same  way  round,  that  is,  taken  in  order. 
We  have  the  conclusion  : 

If  three  forces  actiTig  at  a  point  can  he  represented  in  direction 

and  ina^nitude  by  the  sides  of  a  triangle  taken  in  order,  the  forces 
are  in  equilibrium. 

Agam,  if  we  know  that  three  forces  acting  at  a  point  are  in 

equilibrium,  we  may  take  OA,  OB  to  represent  two  of  them. 
Then,  since  the  resultant  of  these  is  OC,  the  third  force  must  be 

represented  by  CO.  Hence  the  three  forces  can  be  represented 
in  direction  and  magnitude  by  OA,  AC,  CO. 

And  we  conclude  that  : 

If  three  forces  acting  at  a  point  are  in  equilibrium,  they  can  be 
represented  in  direction  and  magnitude  by  the  three  sides  of  a 
triangle  taken  in  order. 

These  two  results  are  two  converse  propositions,  the  first  of 

which  is  known  as  The  Triangle  of  Forces. 
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These  results  may  be  stated  in  a  more  compact  form.  But 
first  notice  that  the  triangle  of  forces  gives  us  nothing  about  the 
relative  positions  or  the  lines  of  action  of  the  forces.  For 

equilibrium,  it  is  clear,  by  the  parallelogram  of  forces,  that  any 
force  to  be  the  equilibrant  of  the  other  two  must  pass  through 
their  point  of  intersection.  Hence,  if  we  know  that  three  forces 

pass  through  a  point,  the  first  conclusion  given  above  tells  us 

that  for  the  forces  to  be  capable  of  being  represented  by  the 
sides  of  a  triangle  taken  in  order  is  a  sufficient  condition  for 
equilibrium  ;  and  the  second  conclusion  tells  us  that  it  is  a 

necessary  condition. 

Results. — We  may  then  state  the  results  : 
The  necessary  and  sufficient  conditions  for  three  forces  in  equili- 

librium  are 

(1)  That  they  should  pass  through  a  point. 
(2)  That  they  should  be  capable  of  being  represented  by  the 

three  sides  of  a  triangle  taken  in  order. 

There  is  one  exception  to  the  first  condition  that  the  three 

forces  should  all  pass  through  one  point  ;  that  is,  when  the 
three  forces  are  all  parallel  to  each  other.  What  the  conditions 
are  in  this  case  we  shall  see  later  on.  But  if  two  of  the  forces 

are  inclined,  so  that  their  lines  meet  at  a  point,  as  considered 

above,  then  it  is  always  necessary  for  equilibrium  that  the 

third  force  should  pass  through  the  same  point. 

Practical  Application  of  Results.— These  results  are  of 
great  use  in  practice.  The  representation  of  forces  by  means  of 
the  sides  of  triangles  is  more  convenient  than  the  use  of  the 

Parallelogram  of  Forces. 

Any  question  of  finding  the  resultant  of  two  given  forces  can 

be  solved  more  conveniently  by  drawing  a  triangle.  The  only 
thing  that  the  triangle  does  not  give  is  the  position  of  the 
resultant  ;  but  this  is  known  at  once  when  the  direction  has 

been  found,  since  the  resultant  must  pass  through  the  point  of 
intersection  of  the  two  given  forces. 

The  order  of  drawing  the  sides  of  the  triangle  is  of  great 

importance,  and  great  care  must  be  exercised  in  regard  to  it. 
Referring  to  the  figure  of  the  parallelogram  of  forces,  we  see 
that  the  lines  OA^  OB  are  drawn  out  of  the  same  point  0  ;  but 

in  the  triangle  the  lines  OA ,  A  C\  which  represent  the  two  forces. 
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are  not  drawn  out  of  the  same  point ;  one  begins  where  the  other 

stops,  and  the  angle  between  them  is  not  the  angle  between  the 
given  forces,  but  the  angle  supplementary  to  it,  that  is,  the 

adjacent  angle,  which  with  the  given  one  makes  two  right 
angles.  The  line  representing  the  equilibrant  of  these  two  is 
CO,  which  closes  up  the  triangle  and  brings  us  back  to  the 
starting  point.  The  resultant  of  the  two  given  forces  is  OC, 
which  carries  us  from  0  to  C,  just  as  the  paths  OA,  AC  dio,  only 
along  a  straight  course.  The  line  of  the  resultant  is  the  line 
drawn  from  the  starting  point  of  one  of  the  lines  representing 

the  forces  to  the  stopping  point  of  the  other  ;  or  it  has  the  same 
starting  point  as  one,  and  the  same  stopping  point  as  the  other. 

For  the  same  two  given  forces  another  triangle  may  be  drawn 

by  drawing  OB  to  represent  one  force,  and  then  BC  to  represent 
the  other,  so  that  we  get  the  other  half  of  the  parallelogram. 

We  obtain,  of  course,  the  same 

results ;  CO  for  equilibrant,  and 
OC  for  resultant. 

If  P  and  Q  are  two  given  forces, 

the  figures  show  how  we  may  con- 
struct a  triangle  to  obtain  their 

resultant,  namely,  either  by  draw- 
ing AB  first  for  P,  and  then  BC 

for  Q,  or  by  drawing  A  'B'  first  for 
Q,  and  then  B'C  for  P.  The  re- 

sultants AC,  A'C,  obtained  in  the 
two  cases,  represent  the  same  force 
in  magnitude  and  direction. 

The  following  examples  should 

be  solved  by  accurate  measuring  and  drawing  of  the  triangle 
representing  the  given  forces  and  their  resultant. 

A 

Fig.  12.— Two  triangles  for  given 
pair  of  forces. 

Exercises  I.  b. 

Find  the  resultants  in  the  following  cases. 

L  Forces  of  43  and  37  tons  weight  inclined  at  126°. 
2.  40  and  69*3,  making  an  angle  of  150°. 
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Certain  Simple  Results. — In  all  cases  the  resultant  of  given 
forces  can  be  found  by  calculation  or  construction.  There  are, 

however,  certain  simple  cases  of  right-angled  tiiangles  that 
occur  so  frequently  in  mechanical  questions  that  the  relations 
between  their  parts  should  be  carefully  noted. 

If  ABC  is  a  triangle  having  C  a  right  angle  and  each  of  the 

other  angles  45°,  then  the  sides  are  to  one  another  as  1 ,  1 ,  ̂2. 

BC^CA^AB 

1  ~   1  ~  v/2' A 

Thus, 

If  ABC  is  a  triangle  having  the  angles  30°,  60°,  and  90°,  then 
the  ratios  of  the  sides  are  given  by 

CB^BA^AC 

1  "  2   -  V3' It  will  be   convenient  to  notice  for  the  sake  of  numerical 

examples  that,  approximately,  \/2=l*414,  Vs  =  1-732. 
When  by  any  means  we  can  calculate  the  length  of  the 

diagonal  of  the  parallelo- 
gram in  terms  of  the  two 

sides,  or  the  third  side  of 

the  triangle  in  terms  of  the 
other  two,  we  can  determine 

the  magnitude  of  the  result- 
ant of  two  given  forces. 

Suppose  for  example,  that 
OA,  OB  represent  two  forces 

P  and  Q,  making  an  angle   of  60°,  and  OC  their  resultant. 
Draw  CN  perpendicular  to  OA  produced. 
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Then,  by  Euclid  I.  47,  OC^^Oy  +  NC^. 

v/3 But 
AN=\AC,  and  xVC=-^  .  AC. 

(f-y 
/.    OC^^{OA+\ACf  + 

=  OA^  +  AC^  +  OA.Aa 

Now  since  OA,  AC,  OC  contain  as  many  units  of  length 

respectively  as  P,  Q,  R  contain  units  of  force,  we  may  write  for 

this  equation  W  =  P^  +  Q^  +  PQ. 
In  a  similar  way  the  magnitudes  of  the  resultants  of  forces 

containing  angles  30°,  45°,  120°,  135°,  150°  may  be  found  by  the 
help   of    Euclid   I.    47,   and   the   simple 

right-angled  triangles  mentioned  above. 
In  the  case  in  which  the  given  forces 

P  and  Q  are  at  right  angles,  since 
OC'=OA^  +  AC% 

R2^p2  +  Q2 

The  following  examples  will  illustrate 
the  conditions  for  forces  in  equilibrium. 

Example.—  A  body  weighing  1  cwt.  is  suspended  at  the  end 
of  a  rope.  It  is  tied  to  another  rope  which  is  pulled  out 

horizontally  till  the  first  becomes  inclined  at  30°  to  the 
vertical.     Find  the  tensions  in  the  two  ropes. 

Fio.  16. 

Y112 
Fig.  Vi Fig.  18. 

The  figure  represents  the  arrangement.     The  body  is  acted 

upon  by  three  forces,  its  own  weight,  which  is  112  lbs.'  wt.,  and 
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acts  vertically  downwards,  and  the  pulls  or  tensions  in  the  two 

ropes.  Call  these  P  and  Q  lbs.'  wt.  Now,  if  we  draw  a  triangle 
ABC  with  its  sides  parallel  to  the  lines  of  action  of  these  three 
forces,  the  sides  will  also  be  proportional  to  the  three  forces. 
Also  we  know  the  ratios  of  the  sides  of  the  triangle  ABC;  so 
that  we  know  the  ratios  of  the  forces  ;  and  since  we  know  one 

of  these  we  can  calculate  the  other  two,  knowing  the  relations 
which  they  bear  to  the  known  one. 

Thus,  since  the  forces  P  lbs.'  wt.  and  112  lbs.'  wt.  are  repre- 
sented by  the  lines  BA  and  AC,  the  ratio  of  the  forces  is  the 

same  as  that  of  the  lines. 

112     x/3 

224 

Or 

From  which 

P  = 
Q 

112 

V3 
1 

129-3. 

^=;^;  Q=6
4-7. The  answers  are  given  correct  to  the  first  decimal  place,  or  to 

^^th  of  a  Ib's.  weight. 

It  will  generally  be  found  convenient  to  use  one  figure  for  the 

working  in  a  case  of  this  sort  instead  of  two  ;  that  is,  instead  of 
drawing  the  triangle  of  forces  as  a  separate  figure,  it  is  drawn 

as  an  addition  to  the  figure  which  represents,  or  is  a  picture  of, 
the  arrangement  in  the  question. 

We   shall   now  show  how  A 

this  may  be   done  for   this 

question,   and,  at   the   same  /30 
time,  give  a  formal  solution 
of  the  question  such  as  would 
be  required  in  answer  to  it. 

Let  P  and  Q  lbs.'  wt.  be 
the  tensions  in  the  two 

ropes. 
The  body  is  acted  upon 

by  these  tensions  and 

its  own  weight  acting  vertically  downwards. 
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Let  C  be  the  point  in  which  these  three  forces  meet. 

From  A,  a  point  on  the  first  rope,  draw  the  vertical  AB  to 
meet  the  line  of  the  horizontal  rope  produced  in  B. 

Then   since   the   sides   of    the   triangle    ABC    are    in   the 

directions  of  the  three  forces,  ABC  may  be  taken  as  the 

triangle  of  forces. 

Q  _  P      112 

BC~CA~AB' 

Therefore 

1 

P= 

P 

2 
 ' 

224
 

o-'M 

112 

:  129-3. 

=  64-7. 

The  required  tensions  are  129*3  and  647  lbs. 'wt.  correct  to 
the  first  decimal  place. 

Example. — If  the  greatest  tension  which  a  picture  wire  can 

sustain  without  breaking  is  80  Ibs.'  wt.,  find  the  greatest 
weight  of  a  picture  which  the  wire  can  just  carry  when  it 
is  attached  to  two  rings  in  the  ordinary  way,  and  passed 

over  a  nail,  each  part  of  it  making  an  angle  of  60°  with the  vertical. 

Let  y1  5(7  denote  the  string  supporting  the  picture. 
The  string  being  on  the  point  of 

breaking    the    tension    in   each 

part  of  it  is  80  lbs.'  wt. 
Thus  the  picture  is  in  equilibrium 

under  the  action  of  80  lbs.  wt. 

along  AB,  80  lbs.'  wt.  along  CB, 
and   its   own   weight   vertically 

downwards.    Let  this  be  W  lbs.' wt. 

Draw  AD  parallel  to  CB  to  meet 
the  vertical  through  B  in  D. 

Then  ABD  is  the  triangle  of  forces  for  the  forces  acting  on 
the  picture. 

E 3 

\80 

1 

w 

Fig.  20. 
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But  since  AB,  AD  are  both  inclined  at  60°  to  BD,  ABD  is 
an  equilateral  triangle,  i.e. 

But 

BD  =  DA  =  AB. 

W  _  80  _  80 

BD~DA~AB' 
W  =  80. 

Thus  the  required  weight  of  the  picture  is  80  Ibs. '  wt. 
In  this  question  we  have  assumed  that  the  tensions  in  the  two 

parts  of  the  strings  are  equal.  This  follows  from  symmetry, 
because  the  arrangement  is  symmetrical,  and  there  is  no  reason 
why  the  tension  on  one  side  should  be  greater  than  that  on  the 
other. 

This,  however,  admits  of  exact  proof  by  means  of  the  triangle 
of  forces,  and  is  left  as  an  exercise.     See  Exercises  II.  a.  2. 

Example. — Two  strings  are  tied  to  a  post  and  pulled  with 

tensions  of  15  and  20  lbs.'  wt,,  being  inclined  to  each  other 

at  an  angle  of  45°.     What  is  the  entire  pull  on  the  post  ? 

The  required  pull  is  the  resultant  of  15  and  20  lbs.'  wt. 

acting  in  directions  making  an  angle  45°  with  each  other. 
Draw  AB,   BC  to  represent 

the  two  pulls  in  direction  ^ 
and  magnitude.     Then  AC 

represents  the  resultant. 
Draw    CD    perpendicular    to 

AB  produced. 

AC''-. 
AB^  +  BC^  +  2AB.Bn. 

Fig.  21. 

[Now  we  may  suppose  AB,  BC 
to  contain  15  and  20  units  of  length  respectively;   then  AC 

contains  as  many  units  of  length  as  the  required  force  contains 

lbs.'  wt.] 
1 

And 
BD. V2 

.BC\ 

:.  AC^  =  AB^+BC^+^2  .  AB .  BC. 
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Therefore  if  E  lbs.'  wt.  is  the  required  pull, 

B2  =  152+20HV2.  15.20 
=  1049. 

R  =  32'4. 

The  entire  pull  on  the  post  is  32'4  lbs.'  wt. 
The  note  in  brackets  [  ]  is  given  for  explanation.     It  would 

not  be  necessary  in  a  formal  solution  of  the  question. 

Eicercises  I.  c. 

1.  A  10  lb,  weight  is  supported  by  two  strings,  one  of  which  is 
inclined  at  45°  to  the  vertical  and  the  other  is  horizontal.  What  are the  tensions  ? 

2.  A  body  hangs  by  a  string  and  is  pulled  by  a  spring  balance  till 

the  string  makes  an  angle  of  60°  with  the  vertical.  The  balance 
then  indicates  36  lbs.'  wt.  What  is  the  weight  of  the  body  and  the 
tension  in  the  string  ? 

3.  Find  the  resultant  of  two  forces  of  10  and  12  grams'  weight  in- 
clined at  135°. 

4.  Find  the  resultant  of  two  forces  of  10  and  12  grams'  weight  in- 
clined at  45°. 

Summary. 

Action  of  forces  on  body  free  to  move.  If  two  forces  act  together 
on  a  body  quite  free  to  move,  the  body  will  in  general  begin  to  move 
in  some  manner. 

No  result  is  produced  only  when  the  forces  are  equal  and  opposite. 
Equilibrium.  Forces,  or  the  body  on  which  they  act,  are  said  to 

be  in  equilibrium  when  the  forces  balance  each  other  and  produce  no 
tendency  to  motion. 

Measurement  of  forces.  A  force  can  be  measured  in  terms  of  a 

unit,  as  for  instance  a  pound's  weight  or  a  gram's  weight. 
Graphic  representation  of  a  force..  A  straight  line  can  be  drawn 

to  represent  a  force  (1)  in  direction,  (2)  in  magnitude,  with  a  chosen 
scale,  (3)  in  line  of  action,  (4)  in  sense,  by  adding  an  arrow-head. 

Parallelogram  of  forces.  If  two  forces  are  represented  by  the 
sides  AB,  AD  oi  a,  parallelogram  A  BCD,  their  resultant  is  repre- 

sented by  the  diagonal  AD. 
Measurement  of  angles.     Angles  are  measured  in  degrees. 

Triangle  of  forces.  If  three  forces  acting  at  a  point  can  be  repre- 
sented by  the  sides  of  a  triangle  taken  in  order,  the  forces  are  in 

equilibrium. 
The  converse  of  this  is  also  true. 



CHAPTER  II. 

RESOLUTION  OF  FORCES.     POLYGON  OF  FORCES. 

Composition  and  Resolution  of  Forces.— To  find  the  re- 
sultant of  two  given  forces,  or  the  single  force  to  which  they  are 

equivalent,  is  called  compounding  the  given  forces. 
To  find  two  forces  to  which  a  given  one  is  equivalent,  or  which 

would  produce  the  same  effect  as  the  given  force,  is  called 

resolving  the  given  force. 
The  two  forces  thus  found  are  called  components  of  the  given 

one. 

Two  given  forces  can  only  be  compounded  in  one  way,  but 
one  force  may  be  resolved  into  two 
in  an  endless  number  of  ways. 

If  QA  represents  completely  a 

force,  and  we  draw  any  parallel- 
ogram, such  as  OB  AG,  the  forces 

represented  by  OB  and  OC,  since 
they  have  OA  for  resultant,  would 

produce    the    same    effect    as    OA.      q  B 
Thus  OA  may  be  resolved  into  OB         Fig.  22.— Components  of  a  given 
and  Oa 

Resolution  of  Forces. — It  is  clear  that  a  given  force  may  be 
resolved  into  two  forces  along  any  two  straight  lines  meeting  at 
some  point  in  its  line  of  action,  if  the  force  lies  in  the  same  plane 
as  these  two  lines.  If  OB,  OC  are  the  lines,  we  have  to  make 

OA  to  represent  the  given  force,  and  draw  AC,  AB  parallel  to 

the  given  lines  so  as  to  form  a  parallelogram.  Then  OB,  OC 

represent  forces  into  which  the  given  one  may  be  resolved. 

Again,  to  use  the  triangle,  let  AB  represent  a  force  in  direc- 
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Fig.  23. 

tion  and  magnitude.     Then  if  P  is  any  point  whatever,  AB  is 

equivalent  to,  or  may  be  resolved  into,  two  forces  represented  in 
direction  and  magnitude  by  JP 
and  PB. 

We  may  resolve  a  force  into  two 

having  given  directions,  that  is, 
parallel  to  given  straight  lines,  by 
means  of  the  triangle. 

Let  AB  denote  the  given  force 

in  direction  and  magnitude.     Let 

L  and  M  be   the  given   straight   lines.      Through  A  and  B 
draw  straight  lines  parallel  to  L  and  M.     This  may  be  done  in 

two  ways,  so  as  to  get  either  the 
triangle  ACB  or  the  triangle  ADB  ; 

and  the  required  forces  are  repi'e- 
sented  in  direction  and  magnitude 

by  CB  and  AC  or  hy  AD  and  DB. 
It  is  clear  that  these  results  are 
the  same. 

The  two  forces  obtained  may  then 

be  supposed  to  act  through  any 
point  on  the  line  of  action  of  the 

given  force. 
It  is  obvious  from  the  construc- 

tion that  the  components  found  for 

AB  parallel  to  L  and  M  have 
definite  senses,  and  cannot  have 

any  others.  The  question  would 

be  impossible  if  the  senses  of  the  components  parallel  to  L 
and  M  were  assigned,  and  were  different  from  those  found  ; 

that  is,  in  the  case  of  our  figure,  the  force  parallel  to  L  must  be 
downward  and  to  the  left,  and  that  parallel  to  M  must  be 
upward  and  to  the  right. 

An  Illustration. — To  illustrate  this  ;  suppose  it  is  required 
to  sustain  a  weight  by  means  of  strings  acting  parallel  to  two 

given  lines  in  the  same  vertical  plane.  This  can  always  be  done. 
The  tensions  in  the  strings  have  to  be  so  adjusted  as  to  produce 

a  resultant  vertically  upwards  and  equal  to  the  weight  of  the 
body. 

Fig.  24. — To  find  components  for 
a  given  force  parallel  to  two  given 
straight  lines. 
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Let  L  and  M  be  the  given  lines.     Draw  x\B  vertically  up- 
wards and  to  represent  the  weight  of  the  body.     Construct  the 

triangle  ABC  to  give  the  com- 
ponents  AC^    CB  of   the   force 

AB. 

The  figures  show  two  differ- 
ent cases  of  drawing  the  lines 

L  and  J/.  But  however  they 

are  drawn  the  problem  is  pos- 
sible. 

It  is  clear  that  the  senses  of 

the  forces  acting  along  the 
strings  could  not,  in  the  case  of 

either  figure,  be  different  from 

those  that  have  been  found,  for  we  could  not  then  construct  a  tri- 
angle to  give  ̂ ^  as  the  resultant  of  the  forces  parallel  to  L  and  M. 

The  same  thing  may  also  be  inferred  from  practical  experience, 
To  take  the  second  figure  for  example  ;  we  could  not  have  the 

pulls  both  upwards,  for  then  they  would  be  both  to  the  right, 

as  in  Fig.  27  ;  nor  could  we  have  them  both  downwards,  as  in 

Fio.  26, 

/ 

Fio.  27. Fig.  28. Fig.  29. Fig.  30. 

Fig.  28  ;  nor  could  we  have  that  parallel  to  L  downwards,  and 
that  parallel  to  J/  upwards,  as  in  Fig.  29.  In  none  of  these 

cases  could  the  strings  combine  to  produce  an  upward  pull. 
The  only  way  in  which  they  can  act  is  as  in  Fig.  30,  which  has 

been  indicated  in  the  construction  by  means  of  the  triangle. 

Rules  for  the  Position  of  Forces. — The  following  rules  for 
the  position  of  the  forces  to  be  found  follow  from  the  use  of  the 

parallelogram  or  triangle,  and  agree  with  practical  experience : 
If  three  lines  are  drawn  out  of  one  point  in  the  directions  and 

senses  of  two  forces  mid  their  resultant,  that  for  the  resultant  must 
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lie  in  the  angle  between  the  other  two^  which  is  less  than  two  right 

angles. 
If  three  lines  are  drawn  out  of  one  point  in  the  directions  and 

senses  of  three  forces  in  equilibriwn,  they  must  form  three  aiujles 
each  less  than  two  right  angles  {or  angles  such  as  those  in  Euclid). 

It  is  important  to  attend  carefully  to  these  points  about  the 

positions  and  senses  of  forces  in  solving  questions,  else  much 

time  may  be  spent  in  drawing  impossible  positions  and  trying 

to  apply  the  triangle  to  them. 
Another  Condition. — The  condition  that  two  forces  and  their 

resultant  or  two  forces  and  their  equilibrant  must  lie  in  one 

plane  must  be  noticed.  This  is  implied  in  the  fact  that  they 
can  be  represented  by  the  sides  of  a  triangle,  because  the  three 

sides  of  a  triangle  must  lie  in  one  plane.  Or,  it  follows  from  the 
fact  that  the  sides  and  diagonal  of  a  parallelogram  are  all  in  one 
plane.  Thus,  if  two  forces  have  their  lines  of  action  in  the 

plane  of  this  page,  neither  the  single  force  to  which  they  are 
equivalent  nor  the  force  which  holds  them  in  equilibrium  can 

rise  up  above  the  plane  of  the  page  or  pass  down  below  it,  but 
must  also  lie  in  the  plane  of  the  page. 

Again,  a  weight  can  only  be  sustained  by  two  strings  if  the 
strings  are  in  one  and  the  same  vertical  plane,  so  that  the  same 

plane  may  contain  the  two  strings  and  the  vertical  line  of  action 
of  the  weight. 

The  reason  of  this  may  be  seen  in  a  general  way  as  follows. 

If  two  of  the  forces  act  in  one  plane  they  have  no  tendency  to 

produce  or  to  prevent  motion  away  from  the  plane  either  one 
way  or  the  other,  but  only  in  the  plane.  If  then  the  third  force 
passes  to  one  side  of  the  plane  it  tends  to  produce  motion 

towards  that  side  ;  and,  there  being  nothing  to  prevent  it,  such 
motion  will  take  place,  so  that  there  can  be  no  equilibrium. 

Action  of  Smooth  Joints. — If  a  rod  is  loosely  jointed  the 
joint  can  only  exert  on  it  a  simple  pull  or  push,  and  cannot  exert 
a  twist  as  a  stiff  joint  or  hinge  could  do. 

If  a  body  is  called  '  light '  in  a  question,  it  is  to  be  understood 
as  a  rule  that  its  weight  is  to  be  neglected,  or  is  negligible  as 
compared  with  the  other  forces  in  action. 

If  a  light  rod  is  in  equilibrium  under  the  action  of  two  forces 
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dne  to  loose  joints  at  its  ends,  these  forces  must  be  equal  and 

oppositely  directed  along  the  same  straight  line.  Thus  they 
must  both  act  along  the  line  of  the  rod. 

Now  there  are  two  ways  in  which  these  forces  may  act. 

(1)  Each  joint  may  exert  a  pull  along  the  rod  away  from  the 

other  joint,  as  indicated  by  the  forces  F,  F'  in  Fig.  31. 

Fig.  31. — Actions  of  joints  on  rod. 

The  rod  then  exerts  a,  pull  along  its  length  on  each  joint,  and 

on  any  body  connected  with  it.  It  is  in  a  state  of  tension,  as  a 

string  could  be. 
(2)  Each  joint  may  exert  a  push  along  the  rod  towards  the 

other  joint,  as  indicated  by  the  forces  F,  F'  in  Fig.  32. 

Fig.  32.  —Actions  of  joints  on  rod. 

The  I'od  then  exerts  a  push  or  thrust  along  its  length  on  each 
joint,  and  on  any  body  connected  with  it.  It  is  in  a  state  of 

compression,  as  a  string  could  never  be. 
The  force  acting  along  the  rod,  considered  as  acting  on  the 

rod  itself,  is  sometimes  spoken  of  as  the  stress  in  the  rod.  A 
stress  of  this  sort  may  be  a  tension  or  a  compression.  The  only 
stress  which  can  exist  in  a  string  (such  as  we  suppose  in 

mechanical  questions,  entirely  without  stiffness)  is  a  tension. 

Example. — AB,  AC  are  two  light  rods  loosely  jointed  to- 
gether at  A  and  to  fixtures  at  B  and  C.     B  is  above  A 

and  C  is  below  A,  and  AB,  ̂ C  are  inclined  at  30°  and  60° 
to  the  horizon.     A  weight  of  100  lbs.  is  hung  on  the  joint 
at  A.     Find  the  natures  and  magnitudes  of  the  forces  in 
the  rods. 

In  any  question  of  this  sort  all  the  lines  along  which  the 

forces  act  must  be  in  some  one  plane  (in  this  case  a  vertical 

plane),  and  we  suppose  that  they  are  put  into  the  plane  of  the 

paper. 
To  solve  the  question  we  consider  the  forces  acting  at  the 

joint  A,  these  being  the  weight  of  the  100  lbs.  and  the  forces 
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along  the  two  rods,  and  get  a  triangle  with  its  sides  in  the 
directions  of  these  three,  making  what  use  we 

can  of  the  lines  of  the  figure  representing 
the  arrangement. 

This  may  be  done  in  several  ways.  If 
we  draw  the  vertical  DE,  then  DEA  is  the 

triangle  of  forces.  DE  represents  the  weight 

of  the  100  lbs.  acting  vertically  down- 
wards ;  and  AD^  EA,  representing  the  forces 

due  to  the  rods,  show  that  these  are  a  pull 

along  AB  and  a  push  along  CA. 
The  triangle  might  also  have  been  obtained 

by   drawing   from   a   point  on  the  vertical 

through  A  a  straight  line  parallel  to  either 
rod  to  meet  the  other  one. 

These  triangles  should  both  be  drawn  for  exercise,  and  it 
should  be  made  out  that  they  both  lead  to  the  same  result  as 

we  have  just  obtained. 

Fig.  33. 

The  formal  solution  follows. 

•Let  P  and  Q  lbs.'  wt.  be  the  forces  in  the  rods 
Draw  the  vertical  DE. 

Then  ADE  is  the  triangle  of  forces. 

And  ABE  is  a  right-angled  A  having  the  angle  ADE  60°. 

P  ̂   Q  ̂ 100 

AD    EA     DE' 

P^^^lOO 

p  =  50;  Q  =  86-6. 
The  required  forces  are 

a  tension  in  ̂ 5  of  50  lbs.'  wt. 
a  thrust  in  AC  of  86-6  lbs.'  wt. 

The  Sides  of  the  Triangle  are  taken  in  Order.— In  the 
above  example  note  particularly  that  the  way  that  we  know 
that  the  forces  on  A  due  to  the  rods  are  a  pull  along  AB  and 

a  push  along  CA  is  this.  The  forces  are  represented  by  the 
sides  of  DEA  take7i  in  order,  or  the  same  way  round. 
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Now,  since  the  force  repi-esented  by  the  vei-tical  side  is  down- 
wards, this  fixes  the  way  of  going  round  the  triangle  ;  therefore 

the  senses  of  the  others  are  from  E  to  A  and  from  A  to  D. 

In  writing  down  the  lines  which  represent  the  forces,  it  is 
best  always  to  write  them  in  the  senses  of  the  forces,  as  has 

been  done  above  in  the  calculation.  Thus  they  are  called  AD^ 
EA,  BE. 

In  a  case  of  this  sort  what  is  the  body  on  which  the  three 

forces  are  acting  ?  We  may  consider  it  to  be  the  joint  or  peg  or 

whatever  connects  the  rods  at  A.  This  is  pulled  vertically 
downwards  by  the  string  which  ties  up  the  weight,  with  a  force 

equal  to  100  lbs.'  wt.,  and  it  is  also  acted  upon  by  the  forces  due 
to  the  rods.  But  we  may  just  as  well  consider  the  forces  to  be 

acting  on  the  100  lbs.  This  is  pulled  vertically  downwards  by 

its  own  weight  directly,  and  it  is  acted  upon  by  the  forces  due 
to  the  rods,  although  not  directly  ;  yet  these  are  transmitted  to 

it  somehow,  and  produce  their  effect  in  keeping  it  in  equi- 
librium. 

Example. — A  50  gram  weight  hangs  at  the  end  of  a  string 
from  a  fixed  point  A.  Another  string  is  tied  to  the  first 
100  centimetres  below  A.  Find  the  least  tension  in  this 

second  string  which  will  hold  the  weight  in  a  position 
20  centimetres  above  its  first  position  in  which  the  first 
string  is  vertical. 

Let  B  be  the  junction  of  the 

two  strings.      Draw  BD 
horizontally  to  meet  the 

vertical  through  A  in  D. 

In  first  position  B  was  100 
cms.  below  A ,  and  is  now 
80  cms.  below  A.    So  that 

^i>  =  80  cms. 

BD  =  'J{\Q0f-{S0f  cms. 
=  60  cms. 

Draw    BE    vertically    up- 

wards to  denote  a  force  of  50  grams'  wt.,  and  EF  parallel 
to  the  second  string. 

Fig.  34. 
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The  body  is  in  equilibrium  under  the  action  of  50  grams' 

wt.  vertically  downwards,  and  the  tensions,  say  T  and  T' 
grams'  wt.  in  the  strings.  EBF  may  be  taken  as  triangle 
of  forces. 

Now,  since  T  is  to  be  as  small  as  possible,  EF  is  to  be  as 

short  as  possible  ;  and  this  will  be  when  it  is  perpendicu- 
lar to  BA. 

The  triangle  EBF,  then,  has  its  angles  equal  to  those  of 
BAD  ;  and  is  therefore  similar  to  BAD,  and  the  sides  of 

the  two  triangles  are  proportional. 
T       50 

FE~EB' •  T  ̂   50 
•  DB~BA' 

T^50 

60     100' 
T  =  30. 

the  required  least  tension  is  30  grams'  wt. 

Or 

It  often  happens,  as  in  this  example,  that  the  triangle  obtained 

as  triangle  of  forces  can  be  shown  to  be  similar  to  some  other 

triangle  whose  sides  are  known. 

Example. — A  weight  is  suspended  by  two  strings  at  right 
angles    to    each    other 

O  from  two  points  on  the 
same    horizontal    line. 
Show  that  the  tension 

in   each   string  is  pro- 
portional to  the  length 

of  the  other. 

Let  AG,  BChe  the  strings, 
and  let  the  tensions  in 

them    be    T,    T'    units 
respectively,  and  the  weight  of  the  body  W  units. 

Draw  AD  parallel  to  CB  to  meet  the  vertical  through  C  in 
D,     Then  DCA  is  triangle  of  forces. 

"   CA    AD' 

Pig,  35. 
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Now,  A  CAD  is  similar  to  triangle  BCA  ; 

•.•    they  have  rt.  L^  at  C  and  A , 

and  L  J (7/)  =  complement  of  DCB  =  L  ADC. 
:.   CA  .AD=BC:CA. 

^     T^. 
•   BC~CA\ 

i.e.  tensions  in  CA,  CB  are  proportional  respectively  to 
the  lengths  of  CB,  CA. 

Jib  and  Tie. — This  arrangement,  employed  in  the  crane  for 
lifting   heavy   bodies,  forms   a   very  good   illustration    of   the 

Fig.  36.— Jib  and  Tie. 

triangle  of  forces.  The  figure  shows  a  model  of  the  arrange- 
ment. AB  is  a  fixed  vertical  post,  AC  a  string  (or  rope  or 

chain),  and  BC  a  rigid  rod.  If  a  weight  is  suspended  from  C, 
the  tension  in  the  string  and  the  stress  in  the  rod,  which  is  a 
thrust,  act  together  to  sustain  the  weight. 

Suppose  that  the  weights  of  the  string  and  rod  may  be 
neglected  in  comparison  with  the  weight  of  the  body  sustained. 

Let  the  weight,  tension  in  string,  and  stress  in  rod  be  W,  T,  P 
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units  of  any  sort,  respectively.     ABC  is  the  triangle  of  forces, 
and  we  have 

W___P___T 

AB~BG~CA' In  the  apparatus  shown  there  are  two  spring  balances  to  give 
the  magnitudes  of  the  forces  in  AC,  BC,  and  a  body  of  known 

weight  is  hung  on  at  C.  The  readings  of  the  balances  and  the 

weight  may  be  compared  with  the  corresponding  lengths,  and 
thus  practical  demonstrations  may  be  obtained  of  the  truth  of 

the  proposition  for  particular  cases. 

Experiment  6. — Take  a  light  rod  AB.  Make  a  hole  through  the 
end  A,  and  fasten  the  rod  by  means  of  a  nail  through  this  hole 
against  the  wall  or  other  vertical  support,  so  that  it  can  turn  freely 
in  a  vertical  plane.  Connect  the  end  ̂   to  a  point  C  vertically  above 
A  by  means  of  a  rubber  band  having  strings  tied  to  its  ends. 

Hang  a  weight  from  B  and  observe  the  length  of  the  band  when 
stretched. 

Remove  the  band  and  find  what  weight  is  necessary  to  stretch  it 
to  the  same  length  hanging  vertically  from  it.  This  gives  the 
tension  in  the  band. 

By  the  triangle  of  forces  we  have  the  relation 
Weight  of  body  hung  on  B    AG 

Tension  in  band  GB' 
These  two  ratios  should  then  be  compared. 

The  band  is  stretched  a  little  to  support  the  rod  in  its  position, 
but  if  the  rod  is  made  very  light  this  can  be  neglected.  Or  the  rod 
can  be  taken  so  long  that  A  is  its  middle  point.  Then  it  balances 
itself,  and  all  the  tension  in  the  band  is  due  to  the  weight  at  B. 

The  nail  or  pivot  supporting  the  rod  at  A  must  be  very  small  and 
work  very  easily  in  the  hole. 

The  same  experiment  may  be  done  with  a  spring  balance  in  BG 
instead  of  the  band.     Then  larger  weights  can  be  used. 

Example. — If  in  the  jib  and  tie  arrangement  the  jib  is 

inclined  at  45°  and  the  tie  at  60°  to 
D  C       the  vertical,  find  the  relations  be- 

tween the  stresses  in  them  and  the 

weight  of  the  body  sustained. 

Let  AG,  BG  denote  the  jib  and  the  tie. 
Then  if  P  and  Q  are  the  stresses  in 

them,  and  W  the  weight  ; 

AC~CB~BA' 

Fig.  37. 
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We  have,  therefore,  to  compare  the  sides  of  tlie  triangle 
ABC. 

Draw  CD  horizontally  to  meet  the  vertical  AB  in  D. 
Call  the  length  of  BD\. 

Then  BC=  2,  DC=^/3,  DA=s/3,  A (7=^3  .  n^2  =  Vg. 

.-.    AC  :CB  :BA=s/6:2:J3-l, 

■  -?=§=    ]^- 
■  Ve    2    Js-i 

Q= 

V3-1 
2 

w 

w. 
W=(n^3  +  1)W. 

This  question  affords  an  example  of  the  use  of  the  simple 

right-angled  triangles,  which  should  be  carefully  noticed. 
Having  taken  the  sides  of  BCD  as  1,  2,  Vs,  as  usual,  we  cannot 

then,  of  course,  take  those  of  ACB  as  1,  1,  V2  ;  but  we  must 

call  them  \^3,  s/S,  s/6,  which  have  the  same  ratios. 
Sailing  Boat, — A  good  example  of  the  resolution  of  forces 

is  afforded  by  the  action  of  the  wind  on  a  sailing  boat. 

The  figure  is  drawn  to  re- 
present a  horizontal  plan. 

Let  J  5  be  the  fore-and-aft 
line  of  the  boat,  the  boat 

being  set  to  go  in  the 
direction  AB. 

Let  FO  be  the  direction 
in  which  the  wind  is 

blowing,  the  figure  show- 
ing the  boat  sailing  against 

the  wind. 

Let  COD  be  the  line  along  which  a  sail  is  set. 

The  wind  exerts  on  the  sail  a  force  which  is  mainly  normal  to 
the  sail.     Let  RO  represent  this  force. 

no  is  equivalent  to  two  forces,  represented  in  magnitude  and 
direction  by  RJV,  NO. 

NO  is  the  force  causing  the  forward  motion  of  the  boat. 
Forces  such  as  RN^  due  to  the  action  of  the  wind  on  the  sails 
E.S.  c 

Showing  action  of  wind  on  sails 
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and  the  components  of  pressure  at  right  angles  to  AB  of  the 
wind  on  the  hull  and  other  parts  of  the  boat,  tend  to  cause 

motion  at  right  angles  to  AB.  This  motion  is  called  lee-way^ 
but,  as  from  the  make  of  the  boat  it  is  much  freer  to  move  along 
than  across  AB.,  these  forces  do  not  produce  much  effect. 

A  boat  in  which  the  side  forces  produce  little  effect  can  sail 

with  the  angle  FOB  small.  This  is  called  sailing  dose  to  the 
wind.  Any  boat  can  be  set  close  to  the  wind ;  but  it  may 

happen  that  so  much  lee-way  is  made  for  a  given  amount  of 
head-way  that  the  actual  line  of  progress  is  not  close  to  the 
wind,  and  it  may  be  more  judicious  to  set  the  boat  not  quite  so 
close. 

Example. — Two  weights,  W,  W  are  attached  to  the  points 

B,  C  oi  a.  string  A  BCD.  AB  is  inclined  at  30°  to  the 
vertical  on  one  side,  and  BC,  CD  at  60°  and  30°  on  the 
other  side.     Compare  W  and  W. 

Let  T  be  the  tension  in 
BC. 

Draw  A£J,  DF  parallel  to 
BC  to  meet  the  verticals 

through  B  and  C  in  ̂  
and  F.  Then  BAE, 

CDF  are  the  triangles 
for  the  forces  acting  at 
B  and  C. '^ra.  39. 

Thus, 

and 

W    EB 
T     AE 

T      DF 

W  =  2W'. 

>=2; 

Example. — Two  rafters  AB^  BC,  each  20  feet  long,  are 
supported  on  the  tops  of  two  walls  at  A  and  C,  these 
points  being  on  the  same  level,  and  32  feet  apart.  Find 

the  additional  horizontal  pressures  against  the  walls  due 

to  suspending  a  weight  of  48  lbs.  from  B. 
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Join  AC.     Draw  BED  vertical,  and  AD  parallel  to  BC. 

Then  AB=20',  AE=IQ',  BE=ED=W. 

[Note. — The  signs  ' 
and  "  are  used  to  sig- 

nify/ee<  and  inches. 
Thus  2'  6"  means  2 
feet  6  inches.] 

Let  R  lbs.'  wt.  be  the 
stress  produced  in 
each  rafter. 

BDA  is  the  triangle 
for  the  forces  acting 
at  B.  Fig.  40. 

AB'
 

48 

BD 

24 
x48  =  40. 

Thus  a  thrust  is  produced  on  the  top  A  of  the  wall  in  the 
direction  BA.     Let  this  be  represented  by  BA.     Then  its 

horizontal  and  vertical  components  are  represented  by 
EA  and  BE. 

:.   if  the  horizontal  thrust  produced  on  the  wall  is  P  lbs.'  wt,, 

P  _  40 
EA~  BA 

P=l?x40  =  32. 

.*.   additional  horizontal  pressure  on  each  wall  is  32  lbs.'  wt. 
In  this  question  we  are  asked  for  the  additional  forces  called 

into  action.  These  will  be  independent  of  any  forces  already 
acting,  and  will  be  the  same  as  if  there  v/ere  no  forces  acting 

before  the  48  lbs.  is  hung  on,  that  is,  as  if  the  rafters  had  no 

weight,  and  were  supporting  nothing  else  ;  and  the  question  is 
solved  in  this  way. 

Actual  rafters  would,  of  course,  be  connected  by  a  horizontal 

piece,  a  tie  rod,  the  object  of  which  is  to  take  the  horizontal 
pressures  and  relieve  the  walls.  But  nothing  of  the  sort  being 

mentioned,  and  the  question  distinctly  implying  that  the  walls 

take  the  pressures,  we  must  suppose  the  tie  rod  not  to  exist. 
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The  question  has  been  done  by  finding  the  stress  in  the  raftei 
AB,  or  the  force  acting  along  it.  This  at  the  end  ̂ 4  is  a  force 
acting  from  ̂   to  ̂   against  the  wall.  Then  we  consider  what 

two  forces  acting  at  A  horizontally  and  vertically  against  the 
wall  would  be  equivalent  to  this  ;  that  is,  we  have  resolved  the 

force  into  its  horizontal  and  vertical  components  ;  and  it  is  the 
horizontal  component  which  is  required. 

The  following  question  is  similar  in  some  respects.  It  in- 
volves the  new  idea  of  the  action  of  smooth  surfaces  on  each 

other. 

Action  of  Smooth  Surfaces. — When  two  perfectly  smooth 
surfaces  are  in  contact,  or  when  a  body  is  in  contact  with  a 

perfectly  smooth  surface,  there  can  be  no  action  between  the 
two  bodies  of  such  a  nature  as  to  prevent  one  from  slipping  over 
the  other  ;  that  is,  there  can  be  no  friction  force,  and  the  only 

action  possible  on  either  body  in  consequence  of  the  contact  is  a 
force  at  right  angles,  or  normal,  to  either  surface  at  the  point  of 
contact.  Thus,  if  a  body  rests  on  a  smooth  table,  then,  however 

it  may  be  pulled  or  pushed,  the  table  can  only  exert  on  it  a 

force  at  right  angles  to  its  own  surface ;  if  the  table  is  hori- 
zontal, and  the  body  is  upon  it,  this  force  must  be  vertically 

upwards.  The  body  presses  on  the  table,  and  the  equal  force 

with  which  the  table  presses  back  the  body  is  sometimes  spoken 
of  as  a  reaction. 

Example. — Two  rods  AB,  BC,  without  weight,  each  20 

inches  long,  are  pivoted  at  B,  and  the  ends  A,  C  con- 
nected by  a  string  32  inches  long.  They  are  then  placed 

with  A  and  C  in  contact  with  a  smooth  horizontal  table, 

the  rods  being  in  a  vertical 

plane.  A  weight  of  48 
ounces  is  hung  on  the  pivot 
at  B.  Find  the  tension  in 

^C         the  string. 

Let  T  ounces'  wt.  be  the 
tension  in  the  string,  and 

R  ounces'  wt.  the  stress  in 
each  rod. 
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Diaw  BED  vertical,  and  AD  parallel  to  BC.     Then 

AE=W\  BE=ED  =  \2". 
ABD  is  the  triangle  for  tlie  forces  acting  at  B. 

B  ̂   48 
••    AB    BJJ 

90 
R  =  =ix48  =  40. 24 

At  the  end  A   there  are  three  forces  in  equilibrium,  40 

ounces'  wt.  along  BA^  T  ounces'  wt.  along  AC^  and  the 
reaction  of  the  table  vertically  upwards. 

BAE  is  the  triangle  of  forces. 

_T  _  40 ••    AE~BA' 
T  =  15x  40  =  32. 

.•.    the  tension  of  the  string  is  32  ounces'  wt. 
In  this  case  we  have  consideied  the  equilihriuin  of  the  three 

forces  acting  at  J.  If  we  had  been  asked  for  the  horizontal 

pressure  against  a  fixed  support  at  A,  it  would  have  been  more 
natural  to  resolve  the  thrust  of  40  oz.  wt,  along  BA  and  find  its 

horizontal  component,  which  is  32  oz.  wt.  along  EA.  In  fact 
we  may  say  that  the  component  32  oz.  wt.  along  EA  is  the  force 

acting  against  the  string ;  and  the  string  maintains  equilibrium 
at  A  by  exerting  a  force  of  32  oz,  wt.  along  AE. 

This  question  can  also  be  solved,  more  quickly,  in  the  follow 

ing  way. 
The  table  sustains  the  48  oz.  by  upward  pressures  at  A  and 

B,  and  it  is  clear  from  the  symmetry  of  the  arrangement 

that  these  pressures  must  be  equal. 
Thus,  considering  the  forces  on  the  joint  at  J,  these  are  the 

tension  in  the  string  along  AE,  the  thrust  in  the  rod  BA 

along  BA,  and  an  upward  force  of  24  oz.  wt. 
AEB  is  the  triangle  for  these  forces. 

T  _  24 
•'•    AE~~EB' 

T  =  i|x24  =  32. 

The  required  tension  is  32  OZ.  wt. 
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This  solution  involves  the  assumption  that  has  been  made 

about  the  pressures  at  A  and  B,  which,  although  very  simple, 

does  not  properly  belong  to  the  subject  of  this  chapter. 
A  similar  solution  can  be  obtained  for  the  last  example  about 

the  rafters  and  their  load. 

The  additional  load  of  48  lbs.  at  B  causes  an  additional 

upward  pressure  of  24  lbs.'  wt.  from  the  wall  at  ̂ ,  as  well  as  an 
additional  horizontal  pressure  from  the  wall  along  AC,  and  an 
additional  thrust  along  AB.  These  three  forces  acting  at  A  are 

in  equilibrium,  and  we  may  use  AEB  as  the  triangle  of  forces, 
and  thus  find  the  relations  between  them. 

Resultant  of  any  number  of  Forces  acting  at  a  Point.— 
Let  the  four  forces  1,  2,  3,  4  act  at  the  point  0. 

Draw  AB,  BC  to  repre- 
sent 1  and  2,  and  so  find 

their  resultant  A  C. 

1  and  2  may  now  be  re- 
placed by  the   force  AC 

f     ̂ 2  /  )c      ̂ ^^• 
^\  1    yC^^"^  I  y  ^  "^^^  ̂ ®  compounded 

^<^/^  I       X  with  AChy  drawing  CD 
to  represent  3,  and  join- 

ing AD. 
Fig.  42.— Resultant  of  several  forces  acting  J^J)  actinar  at   0  is  the at  a  point.  ^  ,    « 

resultant  of  1,  2,  and  3. 

In  the  same  way  by  drawing  DE  to  represent  4,  we  get  AE 
as  the  resultant  of  ̂ i>  and  4,  that  is,  as  the  resultant  of  1,  2,  3, 4. 

It  is  clear  that  we  can  continue  in  the  same  way  for  any 
number  of  forces  acting  at  one  point. 

In  practice  it  is  not  necessary  to  draw  the  lines  AC,  AD,  but 

only  those  which  represent  the  given  forces,  each  one  starting 
from  the  point  at  which  the  last  ended. 

The  lines  representing  the  given  forces  may,  of  course,  be 
drawn  in  any  order,  only  care  must  be  taken  to  draw  each  from 

the  stopping  point  of  the  last  in  the  proper  sense  for  the  cor- 
responding force.  The  resultant  finally  obtained  will,  of  course, 

act  at  0. 

Condition  for  Equilibrium. — The  given  forces  will  be  in 
equilibrium  if,  and  only  if,  they  have  no  resultant.     For  this  the 
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end  of  the  line  drawn  to  repi'esent  the  hist  foi'ce  must  coincide 
with  the  starting  point  of  the  first.  That  is,  in  our  figure,  E 
must  coincide  with  A.     We  may  state  then  : 

Tlie  necessary  and  suf^cie7it  condition  for  equilihrinm  of  any 

number  of  forces  acting  at  a  point  is  that  they  can  he  represented 
in  direction  and  magnitude  hy  the  sides,  taken  in  order,  of  a  closed 

polygon. 
Polygon  of  Forces. — The  proposition  that  this  condition  is 

sufficient  for  equilibrium,  that  is,  that  if  the  condition  holds, 
the  forces  are  in  equilibrium,  is  called  the  Polygon  of  Forces. 

It  is  clearly  an  extension  of  the  triangle  of  forces.  We  have 
here  proved  it  and  its  converse. 

It  should  be  noted  that  it  is  not  a  necessary  condition  for  any 

number  of  forces  beyond  three  to  be  in  equilibrium  that  they 

should  act  through  one  point ;  that  is,  they  may  in  some  cases 
be  in  equilibrium  without  all  acting  through  one  point. 

Experiment  7. — Fasten  three  smooth  pulleys  to  a  vertical  black- 
board. Tie  four  strings  together.  Pass  the  ends  of  three  over  the 

pulleys,  and  let  the  fourth  hang  vertically  down.  Attach  weights 
to  the  ends  of  the  four  strings,  say  1,  1,  2,  3  pounds.  Find  the 
best  position  of  rest  for  the  knot  O  of  the  strings,  as  in  Experiment 
4.  Draw  lines  OA,  OB,  OC,  OD,  marking  the  positions  of  the 
strings.  Then  forces  1,  1,  2,  3  along  OA,  OB,  OG,  OD  are  in  equi- 

librium. Take  a  point  a  on  the  board  and  draw  lines  ab,  be,  cd 
parallel  to  OA,  OB,  OG,  and  proportional  to  the  forces  1,  1,  2.  A 

scale  of  6  ins.  to  a  pound's  weight  will  probably  do  in  this  case,  but 
this,  of  course,  depends  on  the  size  of  the  board.  Join  da.  This 
line  should  be  parallel  to  the  line  OD,  and  proportional  to  3. 

Experiment  8. — Do  the  same  experiment  with  four  rubber  bands 
having  strings  attached,  by  stretching  them  out  over  drawing  paper, 
and  afterwards  finding  the  weights  necessary  to  produce  the  same 
extensions,  as  in  Experiment  5. 

Exercises  II. 

1.  Show  that  if  two  forces  are  equal,  their  resultant  bisects  the 
angle  between  them. 

2.  If  three  forces  are  in  equilibrium  and  two  are  equally  inclined 
to  the  third,  those  two  are  equal. 

3.  Two  horses  walking  along  the  sides  of  a  canal  pull  a  barge 

along  by  means  of  ropes,  each  inclined  at  30°  to  the  direction  of 
motion.  The  tension  in  each  rope  is  120  lbs.'  wt.  What  is  the 
resistance  of  the  water  to  the  motion  of  the  barge  ? 
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4.  If  a  horse  walking  by  the  side  of  a  canal  draws  a  barge  with  a 

rope  inclined  at  30°  to  the  canal,  the  tension  in  the  rope  being  120 
lbs.'  wt.,  find  the  resistance  of  the  water  to  the  forward  motion  of 
the  barge  and  the  side  pressure  which  keeps  the  barge  from  going 
into  the  side. 

[In  this  we  have  to  find  the  two  forces  along  and  at  right  angles 
to  the  canal,  which  are  counteracted  by  the  pull  of  the  rope.] 

5.  A  weight  hangs  from  a  point  ̂   of  a  vertical  wall.  A  rod  BG 
is  placed  horizontally,  with  G  fastened  to  a  point  of  the  string, 
and  B  vertically  below  A.  The  point  B  remaining  fixed,  show  that 
the  longer  BG  is,  the  greater  will  be  both  the  thrust  in  the  rod  and 
the  tension  of  the  string  A  G. 

6.  In  the  above  question  the  rod  remaining  of  fixed  length,  show 
that,  as  it  is  brought  lower  down,  the  stress  in  it  and  the  tension  in 
the  upper  part  of  the  string  become  less  and  less. 

7.  In  the  jib  and  tie  arrangement,  if  the  two  members  are  inclined 

at  60"  and  45°  to  the  vertical,  what  are  the  stresses  in  them  when  a 
body  weighing  1  cwt.  is  held  up  ? 

8.  A  weight  W  is  sustained  by  two  strings  at  45°  and  60°  to  the 
vertical.     Show  that  the  tensions  in  the  strings  are 

W  and  — r   W. 
v/3  +  1  VS+l 

9.  A  weight  W  is  sustained  by  two  strings  at  45°  and  30°  to  the 
vertical,     fehov/  that  the  tensions  in  the  strings  are 

-^  W  and  -.-!==  If. v^3+l  \/3  +  l 

10.  A  kite  and  its  appendages  weigh  4  pounds.  The  string  is 

inclined  at  30°  to  the  horizon,  and  has  a  tension  of  4  lbs.'  wt.  Find 
the  entire  pressure  of  the  wind  against  the  kite,  and  the  direction 
in  which  it  acts. 

11.  A  block  of  stone  weighing  200  lbs.  hangs  at  the  end  of  a  rope 
20  feet  long,  the  upper  end  being  tied  to  a  fixed  support.  Find  the 
horizontal  force  and  the  least  force  whicli,  when  applied  to  the  stone, 
will  hold  it  3  feet  away  from  the  vertical  in  which  it  lies. 

12.  A  string  ABGD  carries  weights  at  B  and  G ;  AB  makes  60° 
and  CD  45°  with  the  horizon  ;  and  BG  is  horizontal.  If  the  weight 
at  C  is  100,  what  is  the  weight  at  A,  and  tlie  tension  in  the  part 
BG  of  the  string  ? 

13.  Two  rods  AB,  BG  of  equal  length  are  loosely  jointed  at  B, 
and  the  ends  A  and  G  are  fixed  at  points  on  the  same  horizontal  line 
by  means  of  pins  which  would  allow  free  rotation.  The  angle  at  B 
formed  by  the  rods  is  turned  upwards.  A  weight  W  is  placed  on  B. 
Show  that  the  stress  in  either  rod  is 

W.AB 

>J4AB^-AC^' 
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14.  Two  light  rods  A  B,  BC,  of  lengths  4  and  3,  are  joined  by  a 
loose  pin  at  B,  and  A  and  C  are  connected  by  a  string  of  length  5. 
A  and  C  rest  on  a  smooth  horizontal  table,  and  B  is  vertically  above 
AC.  A  weight  W  is  hung  on  the  pin.  If  T  is  tlie  tension  of  the 
string,  P  and  Q  tlie  stresses  in  the  rods,  and  B  and  S  the  pressures 
on  the  table  at  A  and  B,  show  that 

15.  ABC  is  a  triangle,  and  in  BC  a  point  D  is  taken,  such  that 
DC=2DB.  Show  that,  if  forces  acting  at  a  point  be  represented 
by  CA  and  SAD,  then  their  resultant  will  be  similarly  represented 
hy2AB.     (Coll.  Precep.,  1898.) 

16.  One  end  of  a  string,  whose  length  is  4  in.,  is  fixed  to  a  point 
in  the  surface  of  a  solid  uniform  sphere  of  5  in.  diameter  ;  the  other 
end  of  the  string  is  fixed  to  a  smooth  vertical  wall,  and  the  sphere 
is  in  equilibrium,  hanging  by  the  string  and  resting  against  the  wall. 
The  spliere  weighs  24  lbs.  Find  the  tension  of  the  string  and  the 
pressure  of  tlie  sphere  on  the  wall.     (Coll.  Precep.,  1898.) 

17.  Show  how  you  would  find,  by  means  of  a  geometrical  diagram, 
the  resultant  of  any  number  of  forces  in  one  plane  acting  on  a  particle. 

On  a  particle  at  0  act  three  forces  of  1  lb.  wt.,  2  lb.  wt.,  -^  lb. 
wt.  along  the  straight  lines  OA,  OB,  DC  respectively.  The  angle 

AOB  is  120°,  and  the  angle  BOC  is  90°.  Find  the  resultant  of  the 
forces  in  magnitude,     (Coll.  Precep.,  1897.) 

18.  Show  by  a  diagram  drawn  to  scale  the  lines  along  which  three 
forces  of  13,  12,  and  5  units  must  act  if  they  are  in  equilibrium,  and 
find  from  the  diagram  the  angle  between  each  pair  of  forces. 
(Science  and  Art,  1897.) 

19.  Draw  lines  AB,  AC  such  that  BAG  is  an  angle  of  70° ;  a  force of  12  units  acts  from  A  to  B,  and  a  force  of  15  units  from  ̂   to  C ; 
find  by  construction  their  resultant,  and  if  the  resultant  acts  from 
A  to  D,  find  from  your  diagram  the  number  of  degrees  in  the  angle 
BAD. 

Specify  the  resultant.  If  the  question  had  been.  Find  the  force 
which  will  balance  the  two  given  forces,  what  difference  would  it 
make  in  the  specification?     (Science  and  Art,  1897.) 

20.  One  end  of  a  string  is  attached  to  a  fixed  point  A,  and  after 
passing  over  a  smooth  peg  B  in  the  same  horizontal  plane,  sustains 
a  weight  of  P  lbs. ;  a  weight  of  50  lbs.  is  now  knotted  to  the  string 
at  C,  midway  between  A  and  B.  Find  P,  so  that,  in  the  position 

of  equilibrium,  AC  may  make  an  angle  of  60°  with  AB.  (Science and  Art,  1898.) 

21.  If  two  forces  act  at  a  point,  and  their  greatest  and  least 
resultants  are  represented  by  22  and  2  respectively,  find  the  forces. 
(Oxford  Locals,  1896.) 
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22.  What  is  meant  by  the  component  of  a  force  in  a  given 
direction  ? 
ABC  is  an  equilateral  triangle,  AD  is  perpendicular  to  BC,  and 

^^  is  parallel  to  BG.  A  force  P  acts  along  AD.  What  is  its  com- 
ponent (1)  along  AB,  (2)  along  AEt     (Oxford  Locals,  1897.) 

23.  A  mass  of  4  lbs.  is  in  equilibrium  on  a  smooth  horizontal  plane 

when  acted  on  by  a  horizontal  force  of  3  lbs.'  wt.  and  by  a  force 
making  an  angle  of  45°  with  the  vertical  drawn  downwards  and  on 
the  opposite  side  to  that  on  which  the  horizontal  force  acts.  Find 
the  pressure  exerted  on  the  plane,  and  the  magnitude  of  the  force 
inclined  to  the  vertical.     (Camb.  Jr.  Loc,  Mech.,  1896.) 

24.  Explain  the  flight  of  a  kite,  and  show  that  when  it  is  at  rest 
in  the  air  the  string  cannot  be  at  right  angles  to  its  plane.  (Camb. 
Sr.  Loc,  Stat.  Dyn.  and  Hydro.,  1897.) 

25.  Find  the  smallest  force  which,  when  applied  to  the  bob  of  a 

pendulum  weighing  1  lb.,  will  keep  the  string  deflected  through  30° 
from  the  vertical.  Find  also  the  tension  of  the  string.  (Camb.  Sr. 
Loc,  Stat.  Dyn.  and  Hydro.,  1898.) 

Summary. 

Resolution  of  a  Force. — A  force  may,  in  general,  be  resolved,  or 
broken  up,  into  two  other  forces  in  directions  parallel  to  any  two 
given  straight  lines. 

Action  of  a  smooth  Joint. — This  is  a  simple  force  through  the  joint. 
If  a  rod  is  acted  on  by  the  forces  supplied  by  two  smooth  joints  at 

its  ends,  and  by  no  other  forces,  those  two  forces  must  be  equal  and 
oppositely  directed  along  the  rod. 

Jib  and  Tie.  — This  arrangement  is  used  in  the  crane.  The  actions 
in  its  parts  are  determined  by  means  of  the  Triangle  of  Forces. 

Sailing  Boat. — By  means  of  the  figure  and  the  resolution  of  forces 
we  see  that  the  action  of  the  wind  is  to  produce  head-way  and  lee- 

way.    The  shape  of  the  boat  makes  the  lee-way  small. 
Action  of  a  smooth  Surface. — This  is  entirely  at  right  angles  to 

the  surface. 

Polygon  of  Forces. — If  any  number  of  forces  acting  at  a  point  can 
be  represented  by  the  sides  of  a  polygon  taken  in  order,  the  forces 
are  in  equilibrium. 

The  converse  of  this  is  also  true. 



CHAPTER  III. 

ROTATIVE   TENDENCY   OF   FORCE.      MOMENTS. 

A  FORCE  acting  on  a  solid  body  in  general  tends  to  move  it  in 
two  distinct  ways : 

(1)  to  translate  it  bodily  from  one  place  to  another  ; 

(2)  to  rotate  it  so  that  its  lines  move  into  different  dii'ections. 
The  tendency  of  a  force  to  produce  translation  we  may  take 

to  be  measured  by  the  magnitude  of  the  force. 

Tendency  to  produce  Rotation. — Let  us  now  consider  the 
tendency  to  produce  rotation. 

Take  first  the  simplest  case,  in  which  the  only  motion  of 

which  the  body  is  capable  is  one  of  simple  rotation  about  a 
fixed  point.  The  body  may  be  supposed  to  be  pierced  with  a 
hole  as  at  0,  and  to  have  a  peg  passed 

through  this  hole  and  driven  into  a 

fixed  support,  so  that  the  body  is 
capable  of  turning  freely  about  this 
peg.  If  a  force  like  F  now  acts  on 
the  body,  it  is  clear  that  it  will  tend 
to  turn  it  about  0  in  the  counter-clock- 

wise sense  in  the  plane  of  the  figure  ;         Fig-    43.— Rotative   tend- 
.  ^  •.      4.      - 1     ̂         encies  of  forces, that  IS,  in  the  sense  opposite  to  that 

in  which  the  hands  of  a  clock  move,  and  will  so  turn  it  unless 

it  is  acted  upon  by  other  forces  to  prevent  this  rotation. 

If  another  force  F'  now  acts  on  the  body  and  tends  to  rotate 

it  in  the  clock- wise  sense,  and  if  F  and  F'  just  counterbalance 
each  other's  effects,  it  is  clear  that  we  must  consider  the  rotative 

tendencies  of  F  and  F'  about  0  to  be  equal  and  opposite.  And 

if  another  force  F",  when  acting  with  F,  just  counterbalances 
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the  effect  of  F,  we  must  consider  the  rotative  tendencies  of  P' 

and  F"  about  0  to  be  equal  and  in  the  same,  namely,  the  clock- 
wise sense. 

Measurement  of  Rotative  Tendency.— What  are  we  to  take 
as  the  measure  of  the  rotative  tendency  of  one  of  these  forces 
about  0  ?  This  will  depend  on  the  relations  that  must  hold 

among  the  forces,  that  is,  among  their  magnitudes,  positions, 

etc.,  in  the  case  considered  ;  that  is,  when  F  counterbalances  F' 

or  F"  ;  and  the  question  may  be  answered  by  experiment. 
The  required  relations  may  be  readily  studied  with  a  very 

simple  piece  of  apparatus,  consisting  of  a  uniform  bar  36  inches 
long,  suspended  at  its  middle  point  0,  so  that  it  is  free  to  rotate, 
but  will  of  itself  rest  horizontally,  having  no  tendency  of  itself 
to  rotate  either  way.  It  is  marked  in  inches,  and  is  notched 

along  the  upper  edge  above  the  inch  marks.  It  is  supplied  with 
a  set  of  weights  which  can  be  hung  on  it  by  means  of  the  notches. 

Now  suppose,  for  example,  that  weights  of  4  and  3  lbs.  are 
hung  on  opposite  sides  of  0,  and  adjusted  so  that  the  apparatus 

balances  in  the  horizontal  position.  The  rotative  tendencies  of 
these  about  0  will  then  be  equal.  It  is  found  that  if  the  4  lb. 

weight  is  6  inches  from  0,  the  3  lb.  weight  must  be  8  inches 
from  0 ;  if  the  4  is  12  inches  off,  the  3  must  be  16  inches  off, 

and  so  on,  the  product  of  each  weight  and  its  distance  from  0 
being  the  same  in  any  case  when  the  two  weights  balance  each 
other. 

Further  experiments  would  show  that  two  forces  acting  on  a 

body  free  to  turn  about  a  fixed  point  will  always  balance  each 
other  if  the  forces  tend  to  turn  the  body  in  opposite  senses,  and 

the  product  of  each  force  and  the  perpendicular  distance  from 
the  fixed  point  on  it  is  the  same.  Thus,  in  the  above  example 

with  the  forces  F,  F',  F",  if  n,  7^',  n"  are  the  perpendiculars  from 
the  point  0  on  the  lines  of  action  of  the  forces,  the  products  Fm, 

FV,  T"n"  must  all  be  equal. 
This  result  seems  to  indicate  that  the  product  T7i  may  be 

taken  as  a  measure  of  the  twisting  or  rotative  tendency  of  the 
force  F  about  0.  It  would  not  do,  however,  to  assume  this  yet ; 

for  although  we  know  that  when  Fn  =  F'n'  the  two  rotative 
tendencies  are  equal,  it  does  not  follow  that  they  are  equal  or 

proportional  to  Tn  and  T'n\    [There  may,  for  instance,  be  reasons 
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for  supposing  that  rotative  tendency  is  proportional  to  the  square 

of  Fti.  The  relation  Tn^F'n'  would  etill  hold  when  the  ten- 
dencies are  equal.] 

We  may,  however,  proceed  to  reason  as  follows  : 
If  we  double  the  force  F,  keeping  it  in  the  same  position  as 

before,  we  may  clearly  assume  that  we  have  produced  twice  the 
rotative  tendency  about  0.  To  balance  this  we  must  now  double 

F  V  by  altering  F'  or  n'  or  both.  Thus  the  rotative  tendency  of 
F'  is  doubled  by  doubling  the  product  FV. 
Moment. — In  the  same  manner  it  may  be  seen  that  the  rota- 

tive tendency  of  F'  is  increased  in  any  ratio  by  increasing  the 
product  F  V  in  the  same  ratio.  The  rotative  tendency  is  thei'e- 
fore  proportional  to  this  product,  and  the  product  may  be  taken 
as  a  measure  of  the  tendency.  It  is  called  a  moment,  the  formal 
definition  of  which  is  as  follows  : 

The  moment  of  a  force  about  a  point  is  the  product  of  the  force 

and  the  perpendicular  from  the  point  on  the  line  of  action  of  the 

force. 
Further  than  this  we  may  say  that  the  moment  of  a  force  about 

a  point  is  the  measure  of  the  rotative  tendency  of  the  force  about 
the  point. 

Just  as  forces  may  be  measured  in  terms  of  any  suitable  unit 
of  force,  so  these  perpendiculars  may  be  measured  in  terms  of 
any  suitable  unit  of  length.  We  obtain  different  measures  for 

one  and  the  same  moment,  or  rotative  tendency,  according  as 

we  employ  different  units  of  force  and  length,  but  as  long  as  we 
keep  to  same  units  in  any  one  question,  the  measures  obtained 
are  consistent  with  each  other. 

Further  experiments  may  be  tried  with  the  bar  and  weights 
to  confirm  the  use  of  the  moments  as  measures  for  rotativ^e 

tendencies  in  cases  in  which  several  forces  act  so  as  to  help  each 
other.  Suppose  that  several  weights  are  hung  on  one  side  of  0 
and  produce  equilibrium  with  one  or  several  on  the  other  side. 

Suppose,  for  example,  that  we  have  4  lbs.  at  3  ins.  from  0,  and 
and  6  lbs.  at  12  ins.,  both  on  the  same  side  of  0.  The  sum  of 

the  products,  4x3  and  6  x  12,  is  84.  And  we  should  find  that 

these  could  be  balanced  by  7  lbs.  at  12  ins.  from  0  on  the  other 

side,  7  times  12  being  also  84.  And  in  general  we  should  find 

that  there  is  equilibrium  when  the  sum  of  the  products  of  each 
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weight  by  its  distance  from  0  taken  on  one  side  is  equal  to  the 
similar  sum  taken  on  the  other  side. 

Conditions  for  Equilibrium.— In  general  we  should  find  that 
a  body  free  to  rotate  about  a  fixed  point  remains  in  equilibrium 
if  the  sum  of  the  moments  of  the  forces  tending  to  rotate  it  one 

way  is  equal  to  the  sum  of  the  moments  of  the  forces  tending  to 
rotate  it  the  other  way  ;  and  whenever  the  body  remains  in 
equilibrium  this  condition  holds. 

This  indicates  that  in  a  case  of  this  sort  as  well,  when  there 

are  more  than  two  forces  acting,  we  may  look  upon  the  moment 
of  each  force  as  the  measure  of  its  rotative  tendency. 

We  may  state  concisely  the  conclusions  at  which  we  have 
arrived,  thus  : 

The  necessary  and  sufficient  conditions,  for  a  body  free  to  turn 
in  a  plane  about  a  fixed  point  to  be  in  equilibrium  under  the 

action  of  several  forces  acting  on  it  in  the  plane  are  : 

That  the  sum  of  the  moTnents  of  the  forces  about  the  fixed  point 

tending  to  turn  the  body  one  way  should  he  equal  to  the  sum  of  the 
moments  of  the  forces  about  the  same  point  tending  to  turn  the  body 
the  other  way. 

Experiment  9. — Take  a  bar  about  3  feet  long,  balanced  at  its 
middle  point  0,  and  divided  off  in  inches  to  right  and  left  of  this 
point.  Hang  a  4  lb.  weight  at  15  inches  to  the  left  of  O.  Find 
what  weights  must  be  hung  on  to  balance  this  at  distances  to  the 
right  of  0  of  3,  4,  5,  10,  12,  15  inches.  Notice  that  the  product  of 
the  mass  in  pounds  and  the  number  of  inches  is  in  every  case  the 
same  as  the  corresponding  product  on  the  other  side,  that  is  60. 

Experiment  10. — With  the  same  bar  hang  on  a  1  lb.  weight  at 
15  inches,  and  a  3  lb.  weight  at  5  inches  to  the  left  of  0.  Find  all 
the  possible  positions  in  which  an  exact  number  of  pounds  can  be 
hung  at  an  exact  number  of  inches  to  the  right  of  0  to  balance 
these.  Notice  that  the  moment  of  the  weight  on  the  right  is  in 
every  case  equal  to  the  sum  of  the  moments  of  the  weights  on  the 
left. 

Experiment  11. — With  the  same  bar  hang  3  lbs.  at  15  inches  and 
1  lb.  at  10  inches  to  the  left  of  0,  and  1^  lbs.  at  10  inches  to  the 
right  of  O.  Find  what  weights  are  necessary  to  maintain  equi- 

librium at  distances  4,  8,  10,  16  inches  to  right  of  O.  Show  that 
sum  of  moments  of  weights  on  left  of  0  is  equal  to  sum  of  moments 
of  weights  on  right  of  O. 



ROTATIVE  TENDENCY  OF  FORCE.     MOMENTS.        47 

Example. — A  uniform  rod  is  freely  balanced  at  its  middle 
point.  Weights  of  4  and  7  grams  are  hung  at  distances 
of  7  and  12  centimetres  from  the  middle  point  on  one 
side,  and  weights  of  3,  2  and  1  grams  at  distances  of  16, 
20  and  12  centimetres  on  the  other  side.  Where  must  a 

weight  of  6  grams  be  placed  to  maintain  equilibrium  ? 

Sum  of  moments  of  4  and  7  gram  weights  about  middle 

point  =  4x7  +  7x12  =  112. 
Sum  of  moments  of  3,  2  and  1  gram  weights  about  middle 

point  =  3  X  16  +  2  X  20+1  x  12  =  100. 
Hence  the  6  gram  weight  must  be  hung  on  the  side  of 

the  3,  2  and  1. 

It  must  be  at  such  a  distance  as  to  produce  a  moment 

of  112-100,  or  12. 
Thus  it  must  be  placed  at  2  centimetres  from  the  middle 

point  of  the  rod  on  the  side  of  the  3,  2  and  1  gram 
weights. 

Exercises  III.  a. 

Find  the  weights  that  must  be  hung  at  the  given  positions  on  a 
horizontal  rod  balanced  on  a  point  0  so  as  to  keep  it  in  equilibrium 
in  the  following  cases  : 

1.  Rod  loaded  with  2  and  3  lbs.  at  4  and  2  feet  from  O  on  same 
side  :  required  weight  to  be  2  feet  from  0  on  the  other  side. 

2.  Rod  loaded  with  2  and  3  lbs.  at  4  and  2  feet  from  0  on  opposite 
sides  :  required  weight  to  be  2  feet  from  0  on  side  of  2  lbs. 

3.  Find  where  a  3  lb.  weight  must  be  placed  on  the  rod  to  balance 
it  when  it  carries  weights  of  6  and  8  lbs.  distant  4  and  3  inches  from 
0  on  one  side,  and  weights  of  2  and  7  lbs.  distant  5  and  C  inches  on 
the  other  side. 

Graphic  Eepresentation  of  a  Moment.— To  represent  the 
moment  of  a  force  F  about  a  point 
0,  lay  off  a  length  AB  along  the 
line  of  action  of  F,  to  represent 
F.     Draw  the  perpendicular  OL. 

Then  the  moment  is  represented 

by  AB  X  OL.  —^   [^   ^ 
But  Ji5  X  OZ  =  twice  area  of  tri-  ̂ ^^  44.-Graphic  represemutiun angle  OAB.  of  moment  of  a  force  about  a  point. 

.*.  moment  of  F  about  0  is  represented  by  twice  area  of 
triangle  OAB. 
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Algebraical  Signs  of  Moments. — If  two  forces  act  on  a 
body  to  turn  it  about  a  point,  their  resulting  rotative  tendency 
is  the  sum  of  their  moments  if  they  act  to  turn  the  body  the 

same  way  ;  and  the  difference  of  their  moments,  and  acts  in  the 
sense  of  the  greater  moment,  if  they  act  to  turn  the  body  in 

opposite  ways.  Hence,  if  we  consider  moments  turning  in  one 
sense  to  be  algebraically  positive,  and  those  turning  in  the  other 

sense  algebraically  negative,  the  resulting  rotative  tendency 
of  any  number  of  forces  is  the  algebraic  sum  of  the  given 

moments  ;  and  the  sign  of  this  sum  will  indicate^  in  what  sense 
it  tends  to  rotate. 

It  is  agreed  to  consider  the  counter-clockwise  sense  of  rotation 
positive,  and  the  clockwise  sense  negative  in  the  signs  of 
moments. 

For  instance,  the  algebraical  sum  of  the  moments  about  a 

point  of  weights  4  and  7  units,  acting  respectively  5  units  of 
length  to  the  left  and  2  to  the  right  of  the  point  is 

4x5-7x2  =  6  units  of  moment. 

"We  may  now  state  the  necessary  and  sufhcient  conditions  of 
equilibrium  of  a  body  free  to  rotate  about  a  fixed  point  as 
follows  : 

The  algebraical  sum  of  the  moments  of  the  forces  acting  on 
the  body  about  the  fixed  point  should  be  zero. 

Effects  of  the  Resultant. — The  resultant  of  a  given  set  of 
forces  has  the  same  effect  as  the  given  forces  in  all  respects. 

{a)  It  has  the  same  translative  tend- ency. 

{b)  It  has  the  same  rotative  tendency 
about  any  point. 

(a)  The  direction  and  magnitude  of 
the  resultant  of  given  forces  is  found 

by  means  of  the  polygon,  and  is  repre- 
sented by  the  side  AL,  completing  the 

polygon  whose  sides  AB^  BC^  CD,  ... 

B  KL  represent  the  given  forces. 
Fio.  45. -To  find  magnitude       Any   force    represented  by   AL   in and  direction  of  resultaut.  t        ;.  -,  .       ̂   i? 

direction  and  magnitude ;  or  any  force 
equal  and  parallel  to  the  required  resultant,  and  in  the  same 
sense,  would  have  the  same  translative 
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This,  however,  tells  us  nothing  about  the  position  of  the 
resultant. 

(6)  To  have  the  same  rotative  tendency  about  any  point  the 
resultant  must  have  a  moment  about  the  point  equal  to  the 
algebraical  sum  of  the  moments  of  the  given  forces  about  the 

point. 
Now  the  resultant  has  no  moment  about  any  point  in  its  line 

of  action,  but  has  a  moment  about  any  other  point.  Hence  the 
algebraical  sum  of  the  moments  of  the  given  forces  about  any 
point  in  the  resultant  is  zero.  And  if  we  find  any  point,  such 
that  the  algebraical  sum  of  the  moments  of  the  given  forces 
about  it  is  zero,  the  resultant  must  pass  through  this  point. 

Having  found  the  direction  and  magnitude  of  the  resultant, 
this  condition  is  sufficient  to  determine  its  position,  and  so  to 

determine  it  completely. 

Resultant  of  Two  Parallel  Forces. — These  considerations 
enable  us  to  determine  very  readily  the  resultant  of  two  forces 

which  are  parallel  to  each  other. 

Example. — To  find  the  resultant  of  forces  of  6  and  2  lbs.' 
weight,  along  parallel  lines  and  in  the  same  sense,  acting 
at  points  A^  B,  and  at  right  angles  to  the  line  AB, 
where  AB=4:  feet. 

Since  the  resultant  has  the  same  translative  tendency  as  the 
ffiven  forces,  it   must 

be  8  lbs.'  weight,  par- 
allel to  the  given  forces 

and  in  the  same  sense 

as  these. 
Let  the  resultant  meet 

the    line    AB    in    C. 

8  2A 

C  B 

Fig.  46. 

Then  the  given  forces  must  have  equal  and  opposite 
moments  about  C.  Hence  C  must  be  between  A  and  B. 

Let  the  distance  AChe  x  feet ;  and  BC  be  4  -  ̂   feet ; 

.-.    6.AC=2BC, 

or  6a;  =  2{4:-a;\ 
8.^=8, 

E.S  D 
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Hence  the  resultant  is  8  lbs.'  wt.  in  direction  and  sense  of 
given  forces  passing  through  a  point  distant  1  foot 
from  A  and  3  feet  from  B. 

Or,  to  find  (7,  we  may  say,  more  simply  : 
Since    resultant    has    same    moment    about   any  point   as 

given  forces  taken  together,  we  may  use  the  point  A. 
Now  moment  of  resultant  about  A  is  8^C  in  positive  sense. 
Moment  of  force  6  about  ̂ 4  is  0  ;  and  moment  of  force  2 

about  A  is  2yl5,  and  is  in  positive  sense. 

.-.    ̂ AG=^AB 
=--2x4, 

.-.    AC=\. 

Example. — To  find  the  resultant  of  two  forces  of  6  and 

2  lbs.'  wt.  along  parallel  lines  and  in  opposite  senses, 
acting  at  points  A,  B,  and  at  right  angles  to  AB,  where 
AB==A  feet. 

By  translative  principle,  resultant  is  4  lbs.'  wt.  in  direction  of 
given  forces,  and  in  sense  of 
force  6. 

By  rotative  pi^nciple,  if   C  m 

J^         j[j^  is  a  point  on  the  line  of 
action  of  the  resultant,  the 
forces   6   and   2   must   have 

jTjo  47  equal  and  opposite  moments 
about  C. 

For  the  moments  to  be  opjjosite,  C  must  be  on  the  line  AB 

produced,  towards  one  end  or  the  other. 
For  the  moments  to  be  equal  C  must  be  nearer  to  the 

force  6  than  to  the  force  2. 

.*.    G  is  on  BA  produced  towards  A. 

Let      '  AC=xiQQt. 
Then  6.a7=2(.r  +  4). 

.-.    .^=2; 

.-.    the  resultant  is  4  lbs.'  wt.  parallel  to  given  forces, 
and  in  sense  of  the  6  lbs.'  wt.,  passing  through  the 
point  C  on  BA  produced,  where  AC  =  2  feet. 
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Or,  to  find  (7,  we  may  say  more  simply  : 

Since  resultant  has  same  moment  about  any  point  as  given 
forces  taken  together,  we  may  use  the  point  A. 

Moment  of  resultant  about  A  is  4^4  C,  and  is  in  negative 
sense. 

Moment  of  force  6  about  A  is   0  ;  and  moment  of  force  2 

about  A  is  2AB,  and  is  in  negative  sense. 
.-.    4:AC=2AB =  2x4; 

.-.       AC  =2. 

It  may  be  noticed  that  the  condition  in  these  two  examples, 

that  AB  should  be  at  right  angles  to  the  lines  of  action  of  the 
given  forces,  was  unnecessary.  Because  if  this  is  not  the  case 

the  products,  such  as  SAC,  2AB,  used  in  the  working,  although 
they  are  not  then  the  moments  of  the  forces,  are  proportional  to 
these  moments,  and  may  therefore  be  written  in  the  equations 

instead  of  them,  since  by  writing  these  instead  of  the  true 
moments  every  term  in  the  equation  is  changed  in  the  same 
ratio.  The  result  obtained  in  this  case  will  then  be  the  same  as 

when  AB  is  at  right  angles  to  the  lines  of  action  of  all  the 
forces. 

This  point  will  be  shown  more  clearly  a  little  later  on. 

I 

1 mm 

Fig.  4S. — Three  parallel  forces  in  equilibrium. 

Experiment  12.— Take  a  graduated  bar,  such  as  that  used  in  the 
preceding  experiments.  Hang  it  up  horizontally  by  means  of  two 
spring-balances,  say  at  points  30  inches  apart.  The  balances  will  be 
pulled  out  a  little  by  the  weight  of  the  bar.  Note  carefully  the 
indications. 
Hang  a  weight  of  5  lbs.  at  a  point  distant  12  ins.  from  one  balance 

and  18  ins.  from  the  other.     Notice  the  additional  indications  of  the 
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balances.     These   additional   indications  are  the  measures  of  two 
forces  which  have  the  weight  of  the  5  lbs.  for  their  equilibrant. 

Note  that  the  5  lbs.'  wt.  is  equal  to  the  sum  of  these  indications, 
and  has  the  same  moment  about  any  point,  say  the  point  at  which 
the  left-hand  balance  is,  as  the  two  additional  forces  in  the  balances 
have. 

Experiment  13. — Lay  the  bar  down  fiat  on  a  table,  and  pull  it 
with  two  balances  on  one  side  and  one  on  the  other  along  parallel 
lines.  Any  positions  may  be  taken.  To  start  with,  positions  at  24 
ins.  apart  may  be  used  for  the  two  balances  on  one  side,  and  a  point 
8  ins.  from  one  of  these  and  16  from  the  other  for  the  third  balance. 

Notice  the  indications  carefull}',  and  show  that  the  proper  condi- 
tions for  three  parallel  forces  in  equilibrium  are  satisfied. 

Two  parallel  forces  acting  in  the  same  sense  are  called  like 

parallel  forces. 
Two  parallel  forces  acting  in  opposite  senses  are  called  unlike 

parallel  forces. 

Summary  of  Results. — It  has  already  been  indicated  in 
examples  how  the  resultant  of  two  parallel  forces  may  be  found ; 

and  it  is  recommended  always  to  employ  this  method  in  par- 
ticular cases,  making  use  of  the  two  principles  : 

{a)  of  translative  tendency  to  find  the  magnitude  and  direction 
(including  sense)  of  the  resultant ; 

{h)  of  rotative  tendency  to  find  the  line  of  action  of  the  resultant. 

General  Formulae  for  Eesultant.— The  same  method  may  be 
employed  to  find  general  formulae  for  the  resultant,  as  will  now 
be  shown  ;  but  it  is  preferable  not  to  use  the  general  formulae, 
but  the  principles,  in  working  out  examples. 

To  find  the  res^dtant  of  two  like  parallel  forces  P  and  Q  acting 

at  points  A  and  B. 
Since  the  translative  tendency 

of  the  resultant  must  be  equal  to 

that  of  the  two  forces,  the  result- 
ant must  be  P  +  Q,  parallel  to  the 

forces  and  in  the  same  sense  as 

Fig.  49.- -Composition  of  like  them, 
parallel  forces.  rj^jg  resultant  must  produce  the 
same   rotative  tendency  about   any  point   as   the   two   forces. 
Consider  tbe  point  A. 

Let  the  line  of  action  of  P-f  Q  meet  AB  in  C.     Draw  Ach  at 



ROTATIVE  TENDENCY  OF  FORCE.  MOMENTS.   53 

right  angles  to  the  common  direction  of  the  forces,  meeting  the 
lines  of  Q  and  P  +  Q  in  />  and  c. 

Then  the  moments  of  P,  Q  and  P  +  Q  about  A  are 

0,  Q.^6,(P  +  Q)^c. 

.-.   (P  +  Q)^c  =  Q.^6. 

p ,  AG    AB 
Ac     Ah 

{V  +  qi)AC=q.AB. 
AC=^ 

Similarly  we  may  show  that 
AC^^.AB. 

Or  we  may  get  this  value  for  EC  by  subtracting  A  C  from  AB. 
To  find  the  resultant  of  two  unlike  parallel  forces  P  aoid  Q 

acting  at  points  A  and  B. 
Let  P  be  greater  than  Q. 

By  the  principle  of  translative  effect  the  resultant  must  be 

P  —  Q  parallel  to  the  given  forces  and  in  the  sense  of  P. 
P-Q  must  produce  the  same  rotative  effect  about  J  as  Q 

does,  because  the  rotative  effect  of  P  about  A  is  nothing. 

P-Q  must  therefore  meet  BA  produced  ;  let  it  be-in  C. 
Draw  cA  b  at  right  angles  to  the  forces. 

Then(P-Q)Jc=Q.^6. 

IX  ,  AC    AB 
Ac      Ab 

:.  {V-q)AC=Cl.AB. 

AC=.^^.AB. 
Similarly  we  may  show  that 

p  Fig.    50.— Composition    of    unlike 
BC=  AB.       parallel  forces. 

Or  we  may  get  this  value  for  BC  by  adding  AC  to  AB. 

Equilibrant  of  Parallel  Forces. — If  we  have  to  find  the 
equilibrant  of  the  parallel  forces  P  and  Q  in  either  of  these 

cases,  it  will  of  course  be  a  force  P  +  Q  or  P-Q  acting  through 
C  opposite  to  the  resultant  that  has  been  found. 
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Or  in  any  particular  case  the  equilibrant  would  be  found  by 
considering  that  it  must  produce  exactly  opposite  tendencies, 

translative  and  rotative,  to  the  given  forces,  or  that  it  and  the 

given  forces  produce  no  tendency  to  move  a  body  on  which  they 
act  at  all. 

If  three  parallel  forces  are  in  equilibrium,  it  is  clear  from  the 
cases  that  have  just  been  examined  that  the  largest  is  in  the 

middle  and  is  opposite  to  the  other  two.  This  is  a  useful  point 
to  remember.  In  case  the  resultant  of  two  parallel  forces, 
either  like  or  unlike,  has  to  be  found,  if  there  is  any  difficulty 

about  determining  its  position,  consider  fii'st  where  the  equi- 
librant must  be  so  as  to  satisfy  this  condition  about  the  relative 

positions  ;  and  then  the  resultant  is  exactly  opposite  to  it. 

Taking  Moments. — When  we  write  down  an  equation  show- 
ing that  the  moment  of  a  resultant  about  a  point  is  equal  to  the 

sum  of  the  moments  of  its  components,  or  that  the  sum  of  the 
moments  about  a  point  of  forces  in  equilibrium  is  zero,  the 
operation  is  called  takiiuj  Tnoments  about  a  point. 

It  is  clear  from  the  working  given  above  that  in  taking 

moments  for  a  set  of  parallel  forces,  which  are  all  equally 

inclined  to  a  given  straight  line,  we  may  write  down  such 

products  as  Q .  ̂ 4^,  etc.,  that  is,  the  products  of  the  forces  by 
distances  along  the  line  ;  because  although  these  are  not  the 

true  moments  they  all  have  the  same  ratio  to  the  corresponding 
true  moments. 

The  magnitude  and  direction  of  the  resultant  of  two  parallel 

forces,  as  stated  above,  may  be  considered  to  be  found  by  the 

parallelogram  or  triangle,  this  being  a  particular  case  of  the  use 
of  the  parallelogram  or  triangle. 

Suppose,  for  example,  we  draw  AB,  BC  to  represent  in  direc- 
tion and  magnitude  two  like  parallel  forces.  AG  represents 

their  resultant,  by  the  triangle. 

A  B  C  A  C  B 
Fig.  51.  Fia.  52. 

In  this  case  the  triangle  ABC  has  its  two  sides  AB^  BG  in  one 

straight  line :  hence  the  third  side  coincides  with  them  in 
direction  and  is  equal  to  their  sum. 

Similarly,  if  in  Fig.  52  AB^  BG  represent  two  unlike  parallel 
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foi'ces,  AC  represents  their  resultant,  coinciding  with  them  in 
direction,  being  equal  to  their  difference  and  in  the  sense  of  the 

greater. 

Example.— Two  unlike  parallel  forces  of  7  and  3  lbs.'  wt. 
act  at  points  A  and  Z>,  6  ins. 

apart ;  find  their  resultant.         )kE=4  ^3 

Tlie   resultant  is  a  force  of  4       iq  a  g 

lbs.'  wt.  parallel  to  the  given 
forces,  and  in  the  sense  of 

the  7  lbs.'  wt.     Also  the  re-  "^  R=4 

sultant    must    act   through    a  Fm.  53 -Resultant  and  equili- °  brant    of    two    unlike    parallel 
point  C  in  BA  produced  to-     forces. 
wards  the  end  A. 

[This  may  be  seen  by  considering  that  the  equilibranc  E, 

which  is  4  lbs.'  wt.,  must  act  with  the  3,  and  the  7  nmst  act 
against  and  between  them.] 

To  find  C,  take  moments  about  A. 

[That  is,  we  now  express  that  the  rotative  tendency  of  It 
about  A  is  equal  to  that  of  the  7  and  3  together  about  A,  and  in 
the  same  sense,  that  of  the  7  at  the  same  time  being  zero.] 

Thus,  4.  ̂ (7=3x6  ins. 

AC  =^4^  ins. 

Hence  the  resultant  is  a  force  of  4  Ibs.'  wt.  parallel  to  the 
given  forces  in  the  sense  of  the  7  lbs.' wt.,  and  meeting 
the  line  BA  produced  at  C,  so  that  AC --^4.^  inches. 

Notice  that  it  is  convenient  in  practice  to  take  moments 

about  a  point  through  which  one  of  the  given  forces  acts, 
because  that  force  has  no  moment  about  the  point,  and  the 

equation  of  moments  is  consequently  simplified.  If  we  took 
moments,  however,  about  any  point  whatever,  we  ought  to 
obtain  the  same  position  for  the  resultant. 
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Exercises  III.  b. 

Find  the  resultants  of  the  following  pairs  of  parallel  forces  acting 
at  the  points  ̂   and  jB  respectively. 

1.  2  and  3  lbs.'  wt.  in  same  sense.     AB—IO  feet. 
2.  7  and  10  units  in  same  sense.     AB  =  o. 

3.  7  and  10  units  in  opposite  senses.     AB  =  5. 

4.  25  and  17  oz.  wt.  in  opposite  senses.     A  8  =  4  inches. 

Find  the  equilibrants  of  the  following  pairs  of  parallel  forces 
acting  at  the  points  A  and  B  respectively. 

6.  100  and  75  tons'  wt.  in  opposite  senses.     AB~4:  inches. 
6.  5P  and  3P  in  opposite  senses.     AB^'ia. 
7.  4  and  37  units  in  same  sense.     AB  —  4r  inches. 

8.  8  and  11  oz.  wt.     AB  =  4:it.  9  ins. 

9.  A  force  of  10  units  is  balanced  by  one  of  7  units  acting  in  the 
opposite  direction  to  itself  and  at  a  distance  of  1  foot  from  it, 
and  by  another.     What  and  where  is  the  other  ? 

10.  The  resultant  of  two  like  parallel  forces,  7  and  10  oz.  wt. ,  is 
at  a  distance  of  18  ins.  from  the  greater.  What  is  the  distance 
between  the  given  forces  ? 

11.  There  are  two  unlike  parallel  forces  5P  and  3 P.  The  distance 
of  the  resultant  from  the  greater  is  6a.  What  is  the  distance 
between  the  forces  ? 

12.  A  force  P  is  resolved  into  two  parallel  components  X,  Y,  at 
distances  x,  y  from  it  on  oppot^ite  sides.     Find  them. 

13.  A  force  P  is  resolved  into  two  parallel  components  X,  Y,  at 
distances  x,  y  from  it  on  the  same  side,  x  being  greater  than  y. 
Find  them. 

14.  P,  Q  are  two  like  parallel  forces  1  foot  apart;  3P  =  5^. 
Where  is  their  resultant  ? 

15.  P,  Q  are  two  unlike  parallel  forces  1  foot  apart;  4P  =  1Q. 
Where  is  their  resultant  ? 
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Summary. 

A  force  acting  on  a  body  in  general  tends  to  translate  and  to 
rotate  the  body. 

The  rotative  tendency  of  a  force  acting  on  a  body  free  to  turn 
about  a  fixed  point  is  measured  by  the  moment  of  tlie  force  about 
the  point,  wliich  is  tlie  product  of  the  force  and  the  perpendicular 
distance  from  tlie  point  to  the  line  of  action  of  the  force. 

Condition  of  Equilibrium. — If  a  body  is  free  to  rotate  about  a 
fixed  point,  and  several  forces  act  on  it,  the  necessary  and  sufficient 
condition  for  equilibrium  is  that  the  sum  of  the  moments  of  the 
forces  tending  to  turn  one  way  should  be  equal  to  the  sum  of  the 
moments  of  the  forces  tending  to  turn  the  other  way. 

Graphic  representation  of  moment  of  a  force  about  a  point  is  twice 
area  of  triangle  whose  base  is  the  line  fully  representing  the  force 
and  vertex  the  given  point. 

Sign  of  Moment. — If  a  force  tends  to  produce  rotation  about  a 
point  in  the  counter-clockwise  sense,  its  moment  about  the  point  is 
reckoned  positive  ;  if  in  the  clock-wise  sense,  negative. 

Condition  for  equilibrium  may  be  stated  thus  :  Algebraical  sum  of 
moments  about  fixed  point  must  be  zero. 

The  resultant  of  a  given  set  of  forces  is  the  force  which  has 
(a)  the  same  translative  tendency, 
(6)  the  same  rotative  tendency  about  any  point 

as  the  given  forces. 
Thus,  for  a  given  set  of  parallel  forces  we  may  find  : 
{a)  the  magnitude,  direction,  and  sense  of  the  resultant  by  the 

translative  principle  ;  for  it  must  be  parallel  to  the  given  forces, 
equal  to  the  difference  between  the  sum  of  those  acting  in  one  sense 
and  the  sum  of  those  acting  in  the  opposite  sense,  and  in  the  sense 
of  the  greater  sum  ; 

(&)  the  position  of  the  resultant ;  for  it  must  produce  the  same 
rotative  tendency  about  any  point  as  all  the  forces  taken  together, 
and  in  the  same  sense  of  rotation. 



CHAPTER   IV. 

PARALLEL  FORCES. CENTRE  OF  PARALLEL  FORCES. 

COUPLES. 

We  have  now  shown  how  simple  questions  about  parallel  forces 

and  moments  may  be  solved  by  the  help  of  lules  and  principles 
deduced  entirely  from  experiment. 
We  shall  consider  next  some  theoretical  propositions  about 

parallel  forces  and  moments,  and  shall  show  that  these  lead  to 
the  same  results.  We  shall  begin  with  the  propositions  which 

determine  fully  the  resultant  of  two  parallel  forces,  just  as  the 

parallelogram  of  forces  determines  the  resultant  of  two  inter- 
secting forces. 

Resultant  of  two  like  parallel  forces  P  and  Q  acting  at 
points  A  and  B. 

Insert  two  forces,  each  equal  to  S,  acting  at  A  and  B  along 

BA  produced  and  AB 

produced.  These  pro- 
duce no  effect  on  the 

system,  for  they  neutral- 
ize each  other. 

Let  R  be  the  resultant 

of  P  and  S  at  A,  and  R' 
the  resultant  of  Q  and  S 
at  B.      , 

Let  the  lines  of  action 

of  R  and  R'  meet  in  0. 

Then  we  may  suppose  R  and  R'  to  act  at  0. 
Now  resolve  R  into  its  components  P  and  S,  acting  parallel  to 

Fio.   54. 
forces. 

'P  ^P+Q  Q 
-Composition  of   two  like  parallel 
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the  original  P  and  S  ;  and  similarly  resolve  R'  into  its  com- 
ponents Q  and  S. 

The  forces  S  and  S  neutralize  each  other  ;  and  we  have  left 

the  single  force  P  +  Q. 

Let  C  be  the  point  in  which  the  line  of  action  of  this  force 
meets  AB. 

Since  the  triangle  OCA  has  its  sides  in  the  directions  of  the 
forces  P  and  S  and  their  resultant  R, 

.   aA_^ 

"   OC'V 

Similarly  from  A  OCB,  S5=l- 

■'    CB    P' 

And  CA  +  CB=AB. 

Resultant  of  two  unlike  parallel  forces  P  and  Q  acting  at 
points  A  and  B. 

Suppose  P  to  be  greater  than  Q. 
Introduce  forces  S,  S  as  before. 

Transfer  the  resultants,  R  and  R',  of  P  and  S  and  of  Q  and  S 
to  0,  the  point  in  which  the  lines  of  these  resultants  meet. 

Fig.   55.— Composition  of  two  unlike  parallel  forces. 

Resolve  R  into  its  components  P  and  S  at  0,  and  R'  into  its 
components  Q  and  S  at  0. 

Thus  we  get  the  force  P  -  Q. 
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Suppose  its  line  of  action  meets  the  1 
By  triangles,  as  before, 

ine  AB in  a 

AC 

co~
- 

S 

CB 

0C~ 

S 

Q 

.-. 
AC 

CB 

Q 
P 

nd                               CB- 
-AC= -AB. 

•  -^=A .AB 

;    CB^ 

P P^Q 

AB. 

To  prove  theoretically  that 
If  a  body  is  free  to  turn  about  a  fixed  point  0,  and  is  acted 

upon  by  two  forces  P  and  Q,  which  hold  it  in  equilibrium,  the 
motnents  ofP  and  Q  about  0  are  equal  and  in  opposite  senses. 

(i)  Let  the  forces  be  intersecting. 
Let  the  lines  of  action  of  P  and  Q  meet  in  A. 

The  action  of  the  fixed  support  at  0  is  to 

exert  a  force  on  the  body  whose  line  of  action 

must  pass  through  0  ;  and,  since  this  force 
with  P  and  Q  produces  equilibrium,  it  must 
also  act  through  A. 

Thus  the  body  is  acted  on  by  a  third  force 

along  OA. 
Therefore  the  resultant  of  P  and  Q  is  along 

AO. 

Draw  OB,  DC  parallel  to  the  lines  of  Q  and 

P,  and  OM,  OL  perpendicular  to  them. 

Then  P,  Q  and  their  resultant  may  be  repre- 
sented hy  AB,  AC  and  AO. 

The  moments  of  P  and  Q  about  0  are,  on  the  same  scale,  re- 
presented hy  ABx  OL,  and  ACx  OM. 

But  A  ABO  =  \ABaOL,  and  A  ACO=\ACx  OM,  and 

AABO  =  AACO. 

.'.  ABxOL=ACxOM. 

:.      ̂ xOL==QxOM. 

Fig.  56. 
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(ii)  Let  the  forces  be  parallel. 
Draw  through  0  the  straight  line  LM  perpendicular  to  the 

lines  of  action  of  the  forces,  to  intersect  these  lines  in  L  and  M. 

L  O  M 
O 

P 

M 

Fig.  57.  Fig.  58. 

Then,  as  before,  the  resultant  of  P  and  Q  must  pais  through  0. 

Hence  0  must  be  situated  as  in  the  figures,  the  first  repre- 
senting the  case  in  which  P  and  Q  are  like,  and  the  second  the 

case  in  which  P  and  Q  are  unlike  ;  and  we  must  have  the 

relation  PxOZ^QxOl/. 

Thus,  in  every  case,  the  moments  of  P  and  Q  about  0  are  equal 

in  magnitude  and  in  opposite  senses. 

Convei'sely, 
If  a  body  is  free  to  turn  about  a  fixed  point  0,  and  is  acted  upon 

hy  two  forces  P  and  Q,  such  that  the  moments  of  P  and  Q  about  0 

are  equal  and  in  opposite  senses^  the  body  is  in  equilibrium, 

(i)  Let  the  forces  be  intersecting. 
Make  the  same  construction  as  before. 

.-.    PxOZ  =  QxOJ/, 

and  ABxOL  =  ACxOM. 

•   AB     OC 

:.   P  and  Q  may  be  represented  completely  by  AB  and  A  C. 

.-.   the  resultant  of  P  and  Q  acts  along  AO,  that  is,  through  0. 
(ii)  Let  the  forces  be  parallel. 
Make  the  same  construction  as  before. 

.'.  PxOZ  =  Qx01/,  0  being  between  P  and  Q  if  the  forces 
are  like,  and  outside  them  if  they  are  unlike. 

.'.    the  resultant  of  P  and  Q  passes  through  0. 
Now  a  force  acting  through  0,  the  fixed  point,  has  no  ten- 

dency to  turn  the  body  one  way  or  the  other. 
Therefore  the  body  is  in  equilibrium. 
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Theoretical  Treatment  of  Moments. 

The  conclusions  at  which  we  have  arrived  as  the  result  of 

experiment  about  the  moments  of  any  number  of  forces  may 

also  be  proved  theoretically,  starting  with  the  parallelogram  of 
forces  as  basis. 

We  shall  begin  with  the  following  proposition  : 

The  algebraical  sum  of  the  mome7its  of  two  forces  about  any 

point  in  their  plane  is  equal  to  the  moment  of  their  resultant  about 
the  same  point. 

(i)  Let  the  forces  be  intersecting. 
This  depends  on  the  following  geometrical  proposition. 

Fig.  60. 

Let  A  BCD  be  a  parallelogram,  and  AC  its  diagonal,  and  0 

any  point. 
Then  (1)  if  0  is  without  the  angle  BAD  and  its  vertically 

opposite  angle,      A  OAC^A  OAB+ A  OAD  ; 

(2)  if  0  is  within  the  angle  BAD  or  its  vertically  opposite  angle, 

A  0^C=  difference  between  A"  GAB,  GAD. 

Draw  BEj  CF,  DG  perpendicular  to  GA. 
Through  B  draw  BH  parallel  to  AG. 

Then  it  is  easily  seen  that  Cff=  DG,  and  ffF=  BE. 

:.   in  Fig.  59  CF=BE+DG  ;  in  Fig.  60  CF=BE-DG. 
.*.    in  case  (1) 

^AO .  CF=^AG .  BE+\AG .  DG, 

i.e.  A  0J(7=A  GAB+A  GAD. 
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In  the  same  way  in  case  (2),  if  0  is  in  the  angle  DA  C  or  its 
vertically  opposite  angle, 

A  OAC=AOAB-A  OAD; 

and  if  0  is  in  the  angle  CAB  or  its  vertically  opposite, 
A  (9.4(7=  A  GAB- A  OAB. 

Now  let  AB,  AD  represent  completely  two  forces,  ancUC  their 
resultant. 

Then  the  moments  of  the  three  forces  about  0  are  represented 
numerically  by  twice  the  areas  of  the  triangles  OAB,  OAD,  OAC. 

And  by  what  has  just  been  proved,  if  0  is  without  the  angle 
BAD  and  its  vertically  opposite  angle,  so  that  the  moments  of 
all  three  forces  round  0  are  in  the  same  sense,  the  moment  of 
AD  about  0  is  equal  to  the  sum  of  the  moments  of  AB  andylD 
about  0. 

And  if  0  lies  within  the  angle  BAD  or  its  vertically  opposite 
angle,  so  that  the  moments  of  A  B  and  j4Z)  about  0  are  in  opposite 
senses,  the  moment  oi  AC  about  0  is  equal  to  the  difference  of 
the  moments  of  A  B  and  AD  about  0,  and  is  in  the  sense  of  the 

greater  of  these. 

(ii)  Let  the  forces  be  paralleL 
Let  P  and  Q  be  the  forces  and  0  the  point. 

Draw  through  0  a  straight  line  at  I'ight  angles  to  the  lines  of 
the  forces,  meeting  them  in  .1  and  B. 

Let  the  resultant  R  of  P  and  Q  meet  this  line  in  C. 

^— ?   ?   5  C  A  1^        O 

Fig.  61.  Fig.  fi-2. 

Suppose  P  and  Q  are  like,  and  0  is  in  AB  produced. 

Then    P  .  OJ  +Q  .  6>i?  =  (P  +  Q)  OG+V .CA-Q.CB =R.oa 

.    P  +  Q  =  R,  andP.C^  =  Q.Ci5. 
Suppose  P  and  Q  are  unlike,  and  0  is  in  AB  produced. 

Tlien     :P  .  OA  -Q  .  OB  --=(P  -Q)  OC-T  .  CA+Q.  CB =  -R.OC. 

In  a  similar  manner  the  cases  for  all  other  positions  of  0, 
whether  P  and  Q  are  like  or  unlike,  could  be  proved. 
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Thus,  in  general,  the  algebraical  sum  of  the  moments  of  the 

given  forces  about  0  =  the  moment  of  the  resultant  about  0. 

The  Case  of  any  Number  of  Forces. — This  proposition  may 
now  be  extended  to  the  case  of  any  number  of  forces. 

The  algehraical  sum  of  the  moments  of  any  number  of  forces 

about  a  yoint  in  their  plane^  is  equal  to  the  moment  of  their 
resultant  about  that  point. 

Call  the  forces  A,  B,  C,  D,  etc. 
Sum  of  moments  of  A  and  B  =  moment  of  their  resultant. 
Add  moment  of  C. 

Then  sum  of  moments  of  this  resultant  and  C  =  moment  of 
their  resultant. 

Add  moment  of  D. 

Then  sum  of  moments  of  this  resultant  and  D  =  moment  of 
their  resultant. 

And  so  on. 

Thus  the  sum  of  the  moments  of  all  the  forces  =  the  moment 
of  final  resultant. 

But  this  final  resultant,  got  by  finding  resultant  of  A  and  B, 
then  resultant  of  this  force  and  C,  then  resultant  of  this  and 
D,  and  so  on,  is  the  resultant  of  all  the  forces. 

Hence  the  proposition. 

If  a  body  has  a  point  fixed,  about  which  it  is  free  to  rotate,  it 
will  be  in  equilibrium  only  when  its  resultant  acts  through  this 

point,  for  then  only  does  the  resultant  produce  no  tendency  to 
rotate  the  body  either  way. 

Thus  the  body  is  in  equilibrium  only  when  the  moment  of 

the  resultant  about  the  fixed  point  is  zero,  that  is,  only  when 
the  algebraical  sum  of  the  moments  of  the  given  forces  about 
the  fixed  point  is  zero. 

Therefore  the  necessary  and  sufficient  condition  for  equilibrium 

of  a  body  free  to  rotate  about  a  fixed  point  is  : 
that  the  algebraical  sum  of  the  moments  of  the  forces  acting  on 
it  about  the  fixed  point  should  be  zero. 

Recapitulation.— Notice  that  this  result  has  already  been 
stated  on  purely  experimental  grounds.  It  has  now  been  proved 

theoretically  by  assuming  two  principles  that  rest  on  experi- 
mental evidence  : 
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(1)  The  parallelogram  of  forces  ; 

(2)  The  fact  that  a  body  free  to  turn  about  a  fixed  point  and 

acted  upon  by  a  single  force  is  in  equilibrium  when,  and  only 
when,  the  force  acts  through  the  fixed  point. 

The  second  of  these  may  be  reduced  to  another  principle, 
already  stated,  that  two  forces  can  only  neutralize  each  other 

if  they  are  equal  and  oppositely  directed  along  the  same  straight 
line.  For  the  fixed  point  about  which  the  body  is  quite  free  to 

turn  can  only  act  on  the  body  with  a  force  passing  through 
itself.  Therefore,  for  the  two  forces  to  be  in  a  straight  line,  the 

other  force  must  also  pass  through  the  fixed  point. 
These  theoretical  results  indicate  that  the  moment  of  a  force 

about  a  point  may  be  used  as  a  measure  of  the  rotative  tendency 
of  the  force  about  the  point ;  a  result  already  arrived  at  mainly 
by  means  of  experiment,  and  by  assuming  that  the  rotative 

tendency  of  a  force  about  a  point  is  proportional  to  the  mag- 
nitude of  the  force  as  long  as  its  position  remains  unchanged. 

In  the  same  way  as  in  the  case  of  two  parallel  forces,  the 

resultant  or  equilibrant  of  any  number  of  given  parallel  forces 
can  be  readily  found. 

{a)  By  the  translative  principle  we  find  the  magnitude  and 
direction. 

(/>)  By  the  rotative  principle  we  find  the  position. 
We  must  be  careful  to  note  that  if  the  resultant  is  required  the 

translative  and  rotative  tendencies  are  the  same  in  sense  as  the 

tendencies  of  the  given  forces  acting  together  ;  if  the  equilibrant 
is  required,  the  translative  and  rotative  tendencies  must  be 

opposite  in  sense  to  the  tendencies  of  the  given  forces. 
This  is  illustrated  in  the  following  example. 

Example. — A,  B,  C  are  points  in  order  along  a  light  rigid 
rod.  AB  =  2  ins.,  BC=Z  ins.  Weights  of  5  and  6  lbs. 
are  hung  at  A  and  C.  A  string  passes  vertically  upwards 
from  B  over  a  smooth  pulley,  and  from  its  end  a  weight 
of  4  lbs.  is  hung.  Find  the  force  that  will  keep  the  rod 
at  rest. 

Draw  the  diagram  to  represent  the  arrangement. 

Tlie  force  necessary  to  keep  the  rod  at  rest  is  one  of  6  +  5  —  4, 

that  is,  7  lbs.'  wt.  vertically  upwards. 
E.S.  E 
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Consider  the  moments  about  A. 

Of  the  given  forces  the  sum  of  the  moments  in  the  negative 
sense  is  6  x  5  =  30  ; 

the  sum  of  the  moments  in  the  positive  sense  is  4  x  2  =  8. 
Thus  the  given  forces 

tend  to  turn  round 

A    in    the    negative 

4|             7,. 

A                                                      C 
B 

'5 

6^ 

The   force    7    lbs.'  wt. 
must   tend   to   turn 

Fio.  63.  round  A  in  the  posi- 

tive sense  ;  therefore  it  must  act  to  the  right  of  A. 
Let  its  distance  to  the  right  of  ̂   be  ̂   ins. 

Then  by  moments  about  A, 

7^  =  6.5-4.2  =  22, 
a; =3}. 

The  required  force  is  one  of  7  lbs. '  wt.  vertically  upwards 
from  a  point  distant  3^  ins.  from  A  towards  C. 

The  same  results  would,  of  course,  be  obtained  by  taking 
moments  about  any  other  point. 

Suppose,  for  instance,  that  the  force  of  7  lbs.'  wt.  acts  at 
1/  ins.  to  the  left  of  C.  Then  by  moments  about  C  we 
have 

73/  =  5.  5-4.3  =  13, 

y=lf. 
This  agrees  with  the  result  already  found. 

Checking  Results. — To  test  the  accuracy  of  the  position 
found  for  a  resultant  or  an  equilibrant  in  a  case  of  this  sort  it 

is  a  good  plan  to  take  some  other  point,  different  from  the  one 
about  which  the  moments  have  been  taken,  and  see  whether  the 

moment  of  the  force  found  about  this  new  point  is  equal  to 

the  difference  between  the  moments  of  the  given  forces  about 

the  same  point  in  one  sense  and  those  in  the  other  sense,  that 

is,  to  the  algebraical  sum  of  the  moments  of  the  given  forces  ; 
the  force  found  having  a  moment  in  the  same  sense  as  this  sum, 

or  the  opposite  sense  according  as  it  is  resultant  or  equilibrant. 
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Thus,  in  the  above  example,  having  found  that  the  required 

force  acts  at  3i  ins.  from  A,  this  is  1^  ins.  from  B. 

Moment  of  the  force  about  /i  is  7  .  1^  =  8. 
Algebraical  sum  of  moments  of  given  forces  about  B 

=  5.  2-6.3=-8. 

Thus,  force  found  has  equal  and  opposite  moment  about  B 
to  that  of  the  given  set  of  forces. 

Experiment  14. — Take  a  light,  stiff  rod,  marked  off  in  centi- 
metres (or  inches  will  do).  Attach  rubber  bands,  say  4  or  5,  to 

various  points  of  it,  and  lay  it  down  on  a  table  or  board.  Draw  the 
bands  out,  some  being  on  one  side  of  the  rod  and  some  on  the  other, 
and  fasten  them  so  that  they  all  pull  along  parallel  lines.  Measure 
the  stretched  lengths  of  the  bands. 
Now  remove  the  bands  and  find  the  weights  necessary  to  stretch 

them  to  the  same  lengths.  These  give  the  forces  that  acted  on  the 
rod. 

Show  that  the  sum  of  the  pulls  on  one  side  is  equal  to  the  sum  on 
the  other  side,  and  that  the  algebraical  sum  of  the  moments  of  the 
pulls  about  some  point  in  the  rod  is  zero. 

Experiment  15. — Take  an  old  drawing-board,  or  a  piece  of  wood 
of  similar  size,  about  2  feet  by  18  inches.  Drive  five  or  six  nails 
into  it,  and  tie  strings  to  them.  Attach  spring-balances  to  the 
other  ends  of  the  strings.  Lay  the  wood  on  a  table  and  pull  out  the 
balances  in  various  directions,  so  that  the  strings  all  pull  the  wood 
horizontally,  with  forces  indicated  by  the  spring-balances.  Fasten 
the  balances  so  that  they  continue  to  exert  their  pulls  steadily. 

The  wood'will,  on  account  of  its  weight  and  the  friction  between 
it  and  the  table,  not  take  a  very  definite  position  of  rest,  but  by 
moving  it  about,  and  noticing  the  extreme  limits  of  position  which 
it  can  occupy,  the  best  position  can  be  found. 
Now  mark  the  lines  along  which  the  strings  pull.  Take  any 

point  in  the  wood,  and  carefully  measure  the  perpendicular  distances 
from  this  point  to  the  strings.  Thus  determine  the  moments  of  the 
forces  acting  in  the  strings  about  the  point. 

Show  that  the  algebraical  sum  of  these  moments  is  approximately 

Note. — In  this,  as  in  many  other  such  experiments,  an  exact 
result  is  not  to  be  expected  because  of  the  small  errors  incidental  to 
the  observations.  The  wood  can  only  be  roughly  placed  in  the 
position  which  it  would  occupy  if  the  table  were  perfectly  smooth. 
The  indications  of  the  spring  balances  cannot  be  read  with  absolute 
accuracy  even  if  we  were  sure  that  the  balances  were  absolutely 
correct.  The  perpendicular  distances  cannot  be  measured  with 
absolute  accuracy.  Thus,  we  must  be  content  with  finding  for  the 
algebraical  sum  of  the  moments  a  very  small  amount.      But  the 
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more  carefully  and  accurately  the  experiment  is  performed  the  more 
nearly  will  the  result  be  zero,  as  the  theory  indicates  that  it  should 
be. 

Example. — A  light  rod  16  inches  long  rests  horizontally 
with  its  ends  on  two  supports.  It  carries  masses  of  4,  5, 
and  6  lbs.  at  points  4,  6,  and  8  inches  from  one  end. 

Find  the  pressures  on  the  two  supports. 

[The  downward  pressures  on  the  supports  will  be  equal  to  the 

ujpivard  pressures  on  the  rod  from  the  suppoits  which,  with  the 
weight  of  the  bodies  carried  by  the  rod,  hold  it  in  equilibrium. 
In  any  case  of  this  sort  the  pressures  required  will  be  found  by 

considering  the  magnitudes  of  the  upward  forces  due  to  the 

supports. 
Further,  notice  in  this  question  that  when  we  have  to  find 

two  unknown  forces  which,  with  others,  keep  a  body  in  equi- 
librium, everything  being  known  but  the  magnitudes  of  these 

two  forces,  to  find  either  of  them  we  take  moments  about  a 

point  through  which  the  other  acts.  We  thus  get  an  equation 
involving  only  the  magnitudes  of  one  force. 

The  formal  solution  of  the  question  follows.] 

Let  P  and  Q  pounds'  wt.  be  the  required  pressures.  Then 
the  bar  is  held  in  equilibrium  by  the  action  of  the  weights 

of  the  4,  5,  and  6  pounds  acting  downwards,  and  P  and  Q 

pounds'  wt.  acting  upwards,  a>s  shown  in  the  figure. 
Taking  moments  about  the  left-hand  end, 

Q.  16  =  4.4  +  5.6  +  6.8 

Fxa.64.  B^^t  P  +  Q  =  15; .-.   P  =  9i 

Thus  the  required  pressures  are  9|^  and  5l  lbs.'  wt. 

[To  check,  we  may  determine  P  in  the  same  way  as  Q  was 

found,  that  is,  by  moments  about  the  right-hand  end. 
Thus  P.  16  =  4.  12  +  5.  10  +  6.8 

=  146. 

P  =  9|^,  the  same  as  before.] 
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Example. — AB  is  a  light  rod  12  inches  long.  C  and  D  are 
points  on  it,  such  that  JC=3  inches,  CD  =  3  inches. 
Weights  of  3,  4,  6,  and  2  pounds  are  placed  at  A,  C,  i>, 
and  B.     Find  at  what  point  the  rod  will  balance. 

[We  have  here  to  find  the  resultant  of  given  forces.  We  are 

only  asked  for  the  position  of  the  I'esultant,  that  is,  the  point  at 
which  an  upward  pressure  must  act  on  the  rod  ;  but  the  ques- 

tion will  be  most  easily  solved  by  finding  the  resultant  com- 
pletely, that  is,  by  beginning  with  its  magnitude. 

The  same  is  true  for  many  questions  of  the  same  sort. 

Although  we  may  only  be  asked  for  the  position  of  a  force,  as, 
for  instance,  that  supplied  by  a  support,  this  is  often  most 

simply  determined  by  considering  the  force  fully.] 

The  upward  pressure  due  to  the  point  of  support  is  15 

lbs.'  wt. 
Suppose  this  point  to  be  at  x  inches     a       C       D  B 

from  the  end  A.  j 
Then,  by  moments  about  ̂ 4,  |, 

15.-  =  4.  3  +  6. 6  +  2.  12  =  72.  '        \^^^ 

The  rod  will  balance  at  a  point  4|  inches  from  A. 

We  shall  now  show  how  the  question  may  be  solved  without 

considering  the  force  due  to  the  balancing  point.  In  this  we 
must  have  an  equation  not  involving  this  force.  To  get  such  an 
equation  we  must  take  moments  about  the  balancing  point. 

Let  the  balancing  point  be  x  inches  from  A. 
Since  the  moments  of  6  and  2  about  C  are  greater  than  the 
moment  of  the  3  about  (7,  and  the  moments  of  the  3  and  4 

about  D  are  greater  than  the  moment  of  the  2  about  Z>,  the 
balancing  point  must  be  between  C  and  D.  Thus  x  is 
between  3  and  6. 

By  moments  about  the  balancing  point, 

3a--  +  4(^-3)  =  6(6-.r)  +  2(12-.r), 

(3  +  4  +  6  +  2).r=4  .  3  +  6  .  6  +  12  .  2, 
15^=72, 

^=44. 
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Again  we  may  proceed  in  a  slightly  different  way,  without 
troubling  to  consider  between  what  two  weights  the  balancing 

point  is,  to  begin  with.  Taking  s  inches  as  the  distance  of  this 
point  from  A,  we  write  down  the  algebraical  sum  of  the  moments 
of  all  the  forces  about  the  balancing  point,  and  equate  them  to 
zero.  The  moment  of  the  3  is,  of  course,  3s.  If  oj  is  greater 

than  3,  the  moment  of  the  4  is  positive  (counter-clockwise)  and 
equal  to  4(^  — 3)  ;  if  a;  is  less  than  3,  the  moment  of  the  4  is 

negative  and  numerically  equal  to  4(3  — ;«?).  In  any  case  the 
algebraical  value  of  this  moment  is  4(^  —  3).  Similarly  for  all 
the  others.     The  solution  would  then  be  as  follows  : 

By  moments  about  the  balancing  point, 

3.r  +  4(.^--3)  +  6(.r-6)  +  2(.^;-12)  =  0. 
15^  =  72. 

.r=4|. 

This  method  involves  troublesome  algebraical  considerations, 

but  it  should  be  studied,  because  it  illustrates  the  proposition 

that  the  algebraical  sum  of  the  moments  about  the  fixed  point 
is  zero. 

The  first  method  given  of  solving  the  problem  is  probably  the 
one  which  will  be  found  most  useful  by  the  majority  of  students. 

Example. — Eeplace  a  force  of  10  units  by  two  like  parallel 
forces,  in  the  ratio  3  :  4,  acting  at  6  inches  apart. 

The  sum  of  the  required  forces  is  10  units,  and  their  ratio 

3  :  4,  hence  they  must  be  f  of  10  and  y  of  10  units. 

The  given  force  must  act  between  the  required  forces. 

Suppose  it  acts  at  a  distance  ̂   inches  from  the  force  -y*-. 
Then  by  moments  about  a  point 

on  this  force. 

I 10 10x=-V-x6. 
.r  =  -y-  =  t5y. 

Fig.  66.  «  ^4. 6-.r=2y. 

The  required  forces  are  4y  and  5f  units  acting  on  opposite 
sides  of  the  given  force  parallel  to  it  and  in  the  same 
sense  as  it,  and  at  distances  from  it  equal  to  3f  and 
2t  inches  respectively. 
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Example. — AB  is  a  light  rod  fixed  by  a  smooth  pin  at  the 
end  A,  and  held  in  a  horizontal  position  by  a  string  BC 
fastened  to  B  and  to  a  point  C  vertically  above  A,  and 

inclined  at  30°  to  the  rod.  A  mass  of  1  cwt.  is  hung  on 
the  rod  at  D,  where  AD  =  l  AB.  Find  the  tension  in  the 
string. 

Let  T  lbs.'  wt.  be  the  tension  in  the  string 
Draw  AE  perpendicular  to  BC. 
By  moments  about  A, 

T.AE=^U2 

m      AB 112 

T_  2
24 

AD 

AB 

3  
' 

The  required  tension  is  74f 
wt. 

lbs.' 
Example. — A  light  rod  is  supported  horizontally  by  resting 

on  a  peg  at  A  and  under  another  at  B.  The  pegs  are  4 

inches  apart,  and  each  can  just  support  a  pressure  of  20 

lbs.'  wt.  without  breaking.  A  weight  of  12  lbs.  is  hung 
on  the  rod.  Find  how  far  it  can  be  slid  along  the  rod 
from  A  before  either  peg  gives  way. 

For  equilibrium  of  the  rod  the  weight  must  be  on  the  side 
of  A  away  from  B. 

When  the  weight  is  x  inches  from  A,  ^ 
suppose  the  pressures  on  the  pegs 

A  and  B  are  P  and  Q  lbs.'  wt.,  so 
that  A  exerts  a  force  of  P  lbs.'  wt. 

upwards,  and  B  a  force  of  Q  lbs.' 
wt.  downwards  on  the  rod. 

Then  P  =  Q  +  12. 

Thus  the  pressure  on  A  is  greater  than  that  on  B,  and  it  is 
A  that  will  be  made  to  give  way  by  moving  the  weight 
along. 

17^ 12 

Fig.  G8. 
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<  2§,  so  that  3.r 

By  moments  about  B, 

4P  =  (4  +  ̂ )12. 
P  =  12  +  3^. 

When  P  =  20,  ̂ =2|, 

and,  since  P  =  12  +  3x,  as  long  as  , 
is  <  8,  P  is  <  20. 

Thus  A   will  be  on  the  point  of  giving  way  when  the 
weight  is  moved  as  far  as  2|  inches  from  A. 

Example. — ABCD  is  a  rectangle  that  can  turn  freely  about 
A.  AD  =  1  inches,  AB  =  5  inches.  Forces  of  5  and  10 
units  act  from  D  to  C  and  from  B  to  B.  Find  the  force 

along  CB  which  will  preserve  equilibrium. 

[In  many  questions  of  this  sort,  involving  geometrical  figures, 
the  difficulties  are  rather  those  of  geometry  or  mensuration 

than  of  mechanics,  the  mechanical  principles  involved  being 

very  simple.  Here,  for  instance,  we  have  to  find  the  value  of 
the  perpendicular  from  A  to  BD  in  order  to  find  the  moment  of 
the  force  in  BD  about  A.  The  following  solution  will  show  how 
this  is  done.] 

Let  the  perpendicular  from  A  to  BD  be  a;  inches. 

Then  a;.BD  =  7.5, 
^72  +  52  =  35, 

35 

•Jta 

350 

\/74* 

Momen
t  

of  5  about
  

A    =35. 

Of    these 
  
the  forme

r  
is  the 

greate
r,  

v    10  is  >V74.
 

Moment  of  10  about  A 

Fig.  69. 

Thus,  required  force  must  act  from  C  to  B. 
Let  it  be  P  units. 

By  moments  about  A, 

5^74 

■D    K     350      ̂ _ P .  5=-7=-35 \^74 

P  =  7 

(^-0- 
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Centre  of  Parallel  Forces. — However  the  resultant  is  found, 
it  is  seen  that  the  position  of  the  point  C  does  not  depend  on 
the  common  direction  of  the  given  forces,  that  is,  on  their 
inclination  to  AB. 

Hence,  howevei-  P  and  Q  may  be  changed  in  diiection,  so  long 
as  they  remain  parallel  to  each  other  and  are  always  like,  or 
always  unlike,  and  always  act  at  the  given  points  A  and  B, 
their  resultant  will  pass  through  a  fixed  point  Con  AB. 

C  is  called  the  centre  of  the  parallel  forces  P  and  Q. 
This  result  may  be  extended  to  the  case  of  any  number  of 

parallel  forces  acting  at  fixed  points. 
Take,  for  example,  the  case  of  three  parallel  forces  P,  Q,  S, 

as  shown  in  the  figure. 

The  resultant  of  P  and  Q  is  R' 

at  (7'. 
The  resultant  of  R'  and  S  is  R 

at  (7. 

Now,  whatever  be  the  positions 

of  the  lines  of  P,  Q,  S  with  refer- 
ence to  the  figure  ABD,  C  is  found  Fig.  70. 

by  the  relation               AC  :  C'B  =  0  -."P  ' 

and  C  is  found  by  the  relation 

C'C.CD^S-.H'. 
Hence  (7  is  a  fixed  point,  however  the  common  direction  of 

the  given  forces  with  reference  to  the  figure  ABB  may  be 
changed. 

Obviously  the  same  reasoning  may  be  extended  to  any  number 
of  parallel  forces  acting  at  fixed  points. 

The  fixed  point  for  the  resultant  is  always  called  the  centre 
of  the  given  parallel  forces. 

Couple. — Let  P,  P  be  two  equal  unlike  parallel  forces. 
These  have  no  single  resultant,  for  they  have  no  translative 

effect  in  any  direction.  p 
They  do,  however,  have  some  effect,  for  .  j 

P they  tend  to   rotate   the  body  on   which      q  T 
they  act  in  their  plane. 

Take  any  point  0  in  the  plane  of  the  ^°*   ̂' 
forces,  and  draw  OAB  perpendicular  to  their  lines  of  action. 
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Then  the  algebraical  sum  of  the  moments  of  the  foices  about 
Ois  V.OB-V.  OA=V.AB. 

These  two  forces  are  called  a  couple. 

The  product  of  either  force  and  the  perpendicular  distance 
between  them  is  called  the  moment  of  the  couple. 

The  perpendicular  distance  between  the  forces  is  called  the 
arm  of  the  couple. 

The  moment  of  a  couple  is  considered  positive  or  negative 

according  as  the  couple  tends  to  produce  rotation  in  the  positive 
or  negative  sense. 

We  see  that  the  sum  of  the  moments  of  the  forces  about  any 
point  in  their  plane  is  the  same,  and  is  equal  to  the  moment  of 
the  couple. 

Two  couples  in  the  same  sense  and  having  equal  moments 

will  then  have  the  same  statical  moment,  or  rotative  tendency, 

about  any  point  in  their  plane  ;  and  neither  of  them  has  any 
translative  tendency.  Hence,  we  may  infer  that  these  couples 

have  precisely  the  same  effect,  and  that  one  may  be  replaced  by 
the  other. 

This  may,  however,  be  more  exactly  proved  in  the  following 
way.     We  begin  by  showing  that 

Two  couples  acting  in  a  plane^  having  equal  inoments  in  oppo- 
site senses,  are  in  equilibrium. 

Let  P,  P  be  the  forces  of  one  couple, 

and  Q,  Q  those  of  the  other. 
(i)  Let  the  lines  of  P,  P  be  inclined  to 

those  of  Q,  Q. 

Let  the  lines  of  action  of  the  forces 

form  the  parallelogram  ABCD. 

From  C  draw  CM,  CN  perpendicular 
to  AB,  AD. 

Then,  since  the  moments  of  the  couples 
are  equal, 

.-.   V.CM=(l.CN. 
:.    the  resultant   of   P  and  Q  along 

AB,  AD  passes  through  C.     But  it  also  passes  through  A. 

.'.   the  resultant  of  P  and  Q  along  AB,  AD  is  along  AC. 
Similarly  the  resultant  of  P  and  Q  along  CD,  CB  is  along  CA. 

And  these  resultants  are  equal  in  magnitude,  for  the  com- 
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B   O  C 

ponents  of  one  ai'e  equal  to  those  of  the  other  and  contain  tlie 
same  angle. 

.•.    the  four  given  forces  are  in  equilibrium. 

(ii)  Let  the  lines  of  P,  P  be  parallel  to  those  of  Q,  Q. 
Draw  ABCD  at  right  angles  to 

the  lines  of  the  forces. 

Take  the  point  0  in  BC,  so  that 

P.i?(9  =  Q.(70. 

Then    V.AO^V.AB+V.BO 

riti.   to. 

=  Q.I)0. 

Tlius,  the  resultant  of  P  and  Q  at  ̂   and  C  is  P  +  Q  at  0,  and 

that  of  P  at  J[  and  Q  at  Z)  is  P  +  Q  at  0,  these  two  resultants 

balancing  each  other. 

Hence,  ir.  iny  case  the  four  forces  foi'ming  the  two  couples 
are  in  equilibrium. 

Since  the  couple  P,  P  balances  the  couple  Q,  Q,  it  is  equivalent 

to  any  other  couple  which  will  do  the  same  ;  that  is,  it  is 
equivalent  to  any  couple  which  has  the  same  moment  and  is  in 
the  same  sense  as  it. 

Ani/  number  of  couples  acting  in  a  plane  may  he  replaced  hy  a 

single  couple  whose  moment  is  equal  to  the  algebraical  sum  of  their 
moments. 

We  know  that  we  may  replace  a  couple  by  any  other  having 
any  forces  in  any  direction  and  positions,  provided  the  moments 
of  the  couples  are  the  same. 

Now  replace  all  the  given  couples  by  others,  all  having  forces 

equal  to  P  ;  and  take  the  arms  of  these  couples  in  order  along 
the  straight  line  JO,   these 

being  measured  to  the  right        ; 

if  the  moments  are  positive, 

and  to  the  left  if  they  are       ~ 
negative.     Thus  let  the  arms 

be  as  in  the  figure,  AB,  BC, 
CD,  DE. 

Then  the  couples  are  P,  P  at  J. 
P,  P  at  D,  E. 

P 

0    E 

P    ̂ P 

Jp 

Fig.  74. 

B,  P,  P  at  B,  C,  P,  P  at  C,  D, 
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These  are  equivalent  to  P,  P  at  ̂ ,  E,  that  is,  to  a  couple  of 

moment  P.  ̂ ^,  or  V{AB  +  BC -CD^DE\ 

or  P .  AB  +  V  .  BC-V.  CD  +  T  .  BE, 

which  is  the  algebraical  sum  of  the  given  moments. 

And  this  couple  may  be  replaced  by  any  other  having  the 
same  moment. 

Hence   the   given   couples  may  be   replaced  by  any  couple 

having  a  moment  equal  to  the  algebraical  sum  of  their  moments. 

Example. — Three  forces,  each  equal  to  P,  act  along  the 

sides  AB,  BC,  CD  of  a  square  ABCD.  Find  the  magni- 
tude and  position  of  their  resultant. 

The  square  may  be  taken  as  the  polygon  for  the  three  forces 

acting  along  AB,  BC,  CD,  these  forces  being  represented 
in  magnitude  and  direction  by 
the   sides  along  which  they  act. 

Hence    their    resultant    is    repre- 
sented by  AD. 

Or  the  resultant  is  a  force  P  paral- 
lel to  v4Z>. 

Now  the  given  forces  clearly  have 

a  positive  moment  about  A .    [Or, 

together  they  tend  to  produce  counter-clockwise  rotation 

about  A.'] :.   the  resultant  must  meet  A  B  produced. 
Let  it  meet  AB  at  a.  distance  ̂   from  A. 
Take  moments  about  A. 

.-.   'P.a;='P.AB+'P.AD. 
x  =  ̂ AB. 

The  resultant  is  a  force  P  along  EF,  where  EF  is  parallel 
to  AD,  and  at  a  distance  from  it  equal  to  twice  the  side 
of  the  square. 

A  Iternative  solution. 

Replace  the  couple  consisting  of  P  along  AB  and  P  along 
CD  by  a  couple  consisting  of  P  along  EF  and  P  along 

CB,  where  ̂ i^is  parallel  to  BC,  and  BE=AB. 
This  can  be  done  because  this  couple  has  the  same  moment 

in  magnitude  and  sense  as  the  one  it  replaces. 
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Hence   the   given   forces  are   equivalent   to   P  along  BC, 

P  along  CB,  and  P  along  EF. 
But  P  along  BC  and  P  along  CB  neutralize  each  other. 

The  given  forces  are  thus  equivalent  to  P  along  EF. 

Experiment  16. — Take  the  divided  bar  and  support  it  by  spring- 
balances  near  its  ends.  Note  carefully  the  indications.  These  are 
the  forces  which  support  the  weight  of  the  bar. 
Hang  on  weights,  4  lbs.  5  inches  to  the  right  of  the  left-hand 

balance,  and  5  lbs.  4  inches  to  the  left  of  the  right-hand  balance. 
The  additional  forces  shown  by  the  balances  and  the  weights  are  in 
equilibrium.  It  will  be  found  that  these  additional  indications  are 

4  and  5  lbs.'  wt.  Thus  the  bar  is  acted  on  by  the  two  couples,  one 
of  forces  4  lbs.'  wt.  at  5  inches  apart,  the  other  of  forces  5  lbs.'  wt. 
at  4  inches  apart.  The  moments  of  these  couples  are  equal,  and 
they  act  in  opposite  senses. 

Other  weights  in  other  positions  may  be  tried  which  will  give 
couples  ;  for  instance,  2  lbs.  6  inches  to  right  of  one  balance  and 
3  lbs.  4  inches  to  left  of  the  other,  and  so  on. 

Exercises  IV. 

1.  A  two-foot  rod  has  a  4  and  a  7  lb.  wt.  attached  to  its  ends. 
On  what  point  will  it  balance  ? 

2.  A  crow-bar  6  feet  long  is  used  to  raise  a  heavy  stone,  one  end 
resting  on  the  ground  and  pressing  the  stone  upwards  at  a  point  I5 
inches  from  this  end.  If  the  hands  supply  an  upward  pressure  of 

80  lbs.'  wt.  at  the  other  end,  what  is  the  pressure  on  the  stone, 
the  weight  of  the  bar  being  neglected  ? 

3.  Two  men  carry  a  weight  of  200  lbs.  on  a  pole  8  feet  long,  the 
weight  being  at  first  in  the  middle.  If  the  weight  slips  6  inches 
nearer  to  one  man,  find  the  additional  load  he  has  to  carry. 

4.  In  the  same  question  show  that  wherever  the  weight  is,  to 
begin  with,  if  it  slips  6  inches  nearer  to  one  man,  he  has  in  conse- 

quence the  same  additional  load  to  carry. 
5.  A  BCD  is  a  square,  10  inches  iu  the  side  ;  it  can  rotate  freely 

about  A.  Forces  3,  6,  9  oz.  wt.  act  along  AB,  BC,  CD.  A  kmg 
straight  arm  is  attached  in  line  with  AD.  Find  where  on  this  arm, 
and  at  right  angles  to  it,  a  force  of  1  oz.  wt.  must  act  to  keep  the 
square  fixed,  and  what  the  consequent  pressure  on  the  fixed  point 
A  is. 

6.  The  distance  between  the  axles  of  a  bicycle  is  3  feet  4  inches, 
and  the  weight  of  a  rider  weighing  11  stone  rests  at  a  point  1  foot 
2  inches  in  front  of  the  back  wheel  axle.  What  portion  of  his 
weight  is  carried  by  each  wheel  ? 

7.  The  distance,  measured  horizontally,  from  the  axle  of  a  2-wheel 
cart  to  the  saddle  tugs  is  11  feet.  The  load,  3  cwt.,  falls  8  inches  in 

front  of  the  axle.     VVhat  is  the  pressure  on  the  horse's  back  ? 
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8.  Two  strings,  each  of  which  can  just  carry  a  weight  of  11  lbs., 
support  a  rod  AB  12  inches  long  in  a  horizontal  position  by  its  ends, 
the  strings  being  vertical.  A  weight  of  10  lbs.  is  hung  at  a  point 
4  inches  from  A.  What  is  the  least  distance  from  A  that  a  weight 
of  7  lbs.  can  be  placed  without  breaking  the  string  at  ̂   ? 

9.  A  man  carries  a  bundle  w^eighing  25  lbs.  by  a  light  stick  over 
his  shoulder.  He  holds  the  stick  at  10  inches  from  his  shoulder  and 
2  feet  from  the  point  at  which  the  bundle  is  attached.  What  is  the 
pressure  on  his  shoulder,  and  the  force  which  he  must  exert  down- wards with  his  hand  ? 

10.  A  BCD  is  a  square  pivoted  at  A.  Forces  of  5  and  7  lbs.'  wt. 
act  along  BC  and  DB.  Find  what  force  must  act  at  right  angles  to 
A  D  through  its  middle  point  to  keep  the  square  at  rest. 

11.  ̂ BC  is  a  triangle  in  which  AB=:AC=IS,  and  BC=\0.  A 
force  of  26  units  acts  along  CA.  What  force  must  act  from  A  to 
the  middle  point  of  BG  to  maintain  equilibrium  if  the  point  B  is 
fixed? 

12.  A  rod  ACB  balances  at  C  A  weight  W  a,t  A  is  balanced  by 
Wi  at  B,  and  IF  at  5  is  balanced  by  W^  at  A.     Show  that 

13.  A  rod  balances  at  0.  A  weight  W  placed  at  distance  a  from 
0  is  balanced  by  W  at  distance  h  from  O.  If  W  is  placed  at 
distance  h  from  0,  show  that,  to  balance  it,  W  must  be  placed  at 

distance  — a 

14.  Draw  ABGDEF  to  represent  a  light  rod.  AB^^",  B0=6", 
0D  =  2",  DE=^",  EF=T'.  The  rod  is  supported  by  two  vertical 
strings  of  the  same  sort  at  B  and  E,  and  has  weights  of  3,  8,  and  1 
lbs.  at  .4,  D,  and  F.  A  weight  of  6  lbs.  at  C  just  causes  one  string 
to  break.  Which  string  is  it  ?  and  what  weight  is  just  sufficient  to 
break  either  string  ? 

15.  A  beam  10  feet  long  is  carried  on  two  supports  at  its  ends, 
and  is  loaded  in  any  manner.  If  the  support  at  one  end  is  moved  two 
feet  towards  the  middle  of  the  beam,  show  that  the  pressure  it 
sustains  becomes  greater  by  one-fourth  than  what  it  was  at  first. 

16.  A  body,  capable  of  motion  about  a  fixed  axis,  is  acted  upon 
by  two  forces  equal  to  the  weights  of  10  lbs.  and  8  lbs.  respectively. 
Show  how  these  forces  may  be  made  to  act  so  that  the  body  is  in 
equilibrium.  Illustrate  your  answer  by  a  diagram.  (Oxford  Jr. 
Local,  1896.) 

17.  A  cyclist  weighing  150  lbs.  puts  all  his  weight  on  one  pedal  of 
a  bicycle  when  the  crank  is  horizontal,  and  the  bicycle  is  kept  from 
moving  forwards.  If  the  length  of  the  crank  is  6  inches,  and  the 
radius  of  the  chain-wheel  is  4  inches,  find  the  tension  of  the  chain. 
(Camb.  Jr.  Loc,  Stat.  Dyn.  and  Hydro.,  1898.) 
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Summary. 

The  resultant  of  two  parallel  forces  can  be  fully  determined  by 
theory,  starting  from  the  parallelogram  of  forces. 

The  necessary  and  sufficient  conditions  for  equilibrium  of  a  body 
free  to  turn  about  a  fixed  point,  and  acted  on  by  any  forces,  can  be 
found  by  theory,  making  use  of 

(1)  the  parallelogram  of  forces, 
(2)  the  principle  that  two  forces  are  in  equilibrium  (or  balance 

each  other)  when,  and  when  only,  they  are  equal  and  opposite. 

Centre  of  Parallel  Forces. — If  any  number  of  parallel  forces  act 
through  fixed  points,  and  are  turned  about  in  any  manner,  always, 
however,  remaining  parallel  to  each  other  and  acting  through  the 
same  fixed  points,  their  resultant  passes  through  a  fixed  point. 
This  is  called  the  centre  of  the  parallel  forces. 

A  couple  consists  of  two  equal  parallel  forces  acting  in  opposite 
senses. 

A  couple  has  no  single  resultant. 
The  moment  of  a  couple  means  the  product  of  one  of  the  forces 

and  the  perpendicular  distance  between  the  two  forces. 
Two  couples  in  the  same  plane  have  the  same  statical  effects  if 

they  act  the  same  way,  and  their  moments  are  equal. 
Any  number  of  couples  acting  in  a  plane  may  be  replaced  by  a 

single  couple  whose  moment  is  equal  to  the  algebraical  sum  of  the 
moments  of  the  given  couples. 



CHAPTER  V. 

CENTRE  OF  GRAVITY.      MASS. 
SPECIFIC   GRAVITY. 

DENSITY. 

Centre  of  Gravity  or  Centre  of  Mass. — Imagine  two  inde- 
finitely small  heavy  particles  placed  at  the  points  A  and  B,  and 

rigidly  connected  together  by  a  perfectly  light  connexion,  so 
that  their  distance,  AB,  remains  unalterable.  Let  the  weights 
of  the  particles  be  Wj  and  W2. 

^  Then,  however  the  straight  line  AB 
may  be  inclined  to  the  vertical,  the 
resultant  of  the  forces  Wj  and  W2  is  a 

force  parallel  to  them,  that  is,  vertical, 

and  acting  through  a  fixed  point  0  in 

ABj  so  that A0_W2 

OB    Wi' that   is,   so    that    0    is    the   centre   of 

parallel  forces  Wj,  W2  at  A  and  B. 

Now,  if  the  arrangement  or  system  of  two  particles  be  sup- 
ported in  any  manner,  the  forces  which  support  it,  since  they 

produce  equilibrium  with  W^  and  W2,  would  produce  equilibrium 
with  their  resultant  W1  +  W2-  So  that  exactly  the  same  forces 

would  be  required  to  support  the  system  as  if  the  whole  weight 
were  collected  at  0, 

In  the  same  manner  we  may  suppose  that  there  is  also  a 

third  particle  of  weight  W3  at  C,  the  three  being  rigidly  con- 
nected together.  Let  0  be  now  the  centre  of  parallel  forces 

Wj,  W2,  W3  at  ̂ ,  B,  C.  Then  the  arrangement  of  three  particles 
has  weights  whose  resultant  is  always  the  force  W1  +  W2+W3 

Fig.  76. 
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acting  vertically  downwards  through  0.  Hence  the  arrange- 
ment will  always  require  just  the  same  forces  to  support  it  as  if 

all  the  particles  were  collected  at  0. 
It  is  clear  that  we  may  extend  this  reasoning  to  any  number 

whatever  of  heavy  particles.  Suppose  such  particles  to  be 

rigidly  connected  together  at  points  A,  B,  (7,  i),  etc.,  so  that 

however  the  system  may  be  turned  about,  the  relative  con- 
figuration remains  unaltered  ;  and  suppose  their  weights  are 

Wi,  Wg,  W3,  etc.  Let  0  be  the  centre  of  parallel  forces 
Wi,  W.,,  Wg,  etc.,  at  A,  B,  C,  7),  etc.  Then  0  is  a  point  fixed 
relatively  to  the  system.  And  the  system  will  require  the  same 

forces  to  support  it,  and  will  produce  the  same  pressures  on  any 
given  external  supports  as  if  the  whole  weight  acted  through  0. 

The  point  0  found  in  this  way  is  called  the  Centre  of  Gravity/, 

or  Centre  of  Mass,  of  the  given  system  of  particles. 

Centre  of  Gravity  of  three  equal  heavy  Particles.— To 
find  the  centi'e  of  gravity  of  three  equal  heavy  particles  at  the 
angular  points  of  a  triangle  ABC. 

Let  W  be  the  weight  of  each  particle. 

The  weights  W,  W  at  i?  and  C  are 

equivalent  to  a  weight  2W  acting  at  D, 

the  middle  point  of  BC. 
Join  A  D.  And  take  the  point  GmAD 

sothatBG  =  ̂ .DA. 
Then  the  weights  2W  at  D  and  W  at  ̂  

are  equivalent  to  3W  acting  at  G. 
Hence  G  is  the  re(]uired  Centre  of  Gravity. 

Centre  of  Gravity  of  a  Solid  Body.— The  same  reasoning  as 
above  may  be  extended  to  a  solid  body.  The  solid  body  may  be 
supposed  to  be  made  up  of  an  indefinitely  large  number  of 

indefinitely  small  particles.  The  weight  of  each  of  these  par- 
ticles acts  through  the  point  at  which  the  particle  is  situated. 

So  we  have  a  number  of  parallel  forces  acting  through  fixed 
points.  Their  resultant  is  equal  to  the  sum  of  the  weights,  and 

acts  through  the  centre  of  the  parallel  forces.  This  point  is  the 

Centre  of  Gravity  of  the  body.  The  body  will  then  always  pro- 
duce the  same  statical  effect,  or  will  act  with  the  same  forces  on 

all  external  bodies,  supports,  etc.,  as  if  its  whole  weight  really 
acted  through  its  Centre  of  Gravity, 
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It  should  be  noticed  that  to  the  body  itself  it  makes  a  difference 

whether  the  weight  acts  all  through  the  Centre  of  Gravity  or 
not,  for  the  forces  holding  the  parts  of  the  body  together  will 
be  different  in  the  two  cases.  Consider,  for  instance,  a  long 

unifoim  heavy  beam  carried  on  props  at  its  ends.  The  Centre 

of  Gravity  of  the  beam  is  at  its  middle  point.  The  pressures  on 

the  props  will  be  the  same  as  if  the  whole  weight  of  the  beam 
acted  at  its  middle  point.  But  the  beam  itself  would  be 

differently  affected.  For  the  weight  would  have  a  much  greater 
tendency  to  break  the  beam  if  it  all  acted  at  its  middle  point 

than  if  it  were  uniformly  distributed  along  the  beam  as  is 
actually  the  case. 

Definition  of  Centre  of  Gravity.— We  may  define  Centre  of 
Gravity  in  the  general  case  as  follows  : 

The  Centre  of  Gravity,  or  Centre  of  Mass,  of  a  body  or  system  of 
particles  is  the  point  through  which  the  statical  resultant  of  the 
weight  of  all  the  particles  of  which  the  body  or  system  is  composed 
always  acts  in  all  positions  of  the  body. 

A  very  important  property  of  the  Centre  of  Gravity  is  that  a 
body  will  balance  in  any  position  in  which  it  may  be  placed  on 

its  Centre  of  Gravity,  this  point  being  fixed. 

For  the  weights  of  all  the  particles  of  which  the  body  is  com- 
posed give  rise  to  a  resultant  passing  through  the  Centre  of 

Gravity,  and  this  can  have  no  tendency  to  turn  the  body  any 
way  about  the  Centre  of  Gravity.  The  body  therefore  remains 
in  equilibrium. 

If  a  system  of  heavy  particles  is  arranged  along  a  straight 
line,  the  Centre  of  Gravity  of  the  system  is  in  this  line. 

For  the  centre  of  a  system  of  parallel  forces  at  points  in  a 
straight  line  is  obviously  in  the  same  line. 

We  may  find  the  Centre  of  Gravity  of  such  a  system  by  any 

method  for  finding  the  point  on  which  the  system  will  balance. 

Example. — AB  is  a  light  rod.  Weights  of  3,  5,  ̂,  9  lbs.  are 
placed  a,t  A,  C,  D,  B ;  where  AC=CD=DB  =  3  inches. 
Find  the  Centre  of  Gravity  of  the  system. 

Let  the  Centre  of  Gravity  be  at  ̂   inches  from  A.  The 

resultant  of  the  weights  of  the  masses  is  a  force  equal  to 
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the  sum  of  the  weights  acting  through  the  Centre  of 
Gravity. 

Then  by  moments  about  A,  A    3    C     3    D     3"  B 
.r(3  +  5  +  7  +  9)  =  3.  5  +  6.  7  +  9.1 

24.r=138, 

.r=5f.  ^-^^- 
The  Centre  of  Gravity  is  a  point  on  the  rod  5f  inches  from 

the  end  A. 

The  term  Centre  of  Gravity  is  frequently  abbreviated  into 
C.G. 

Centre  of  Gravity  of  a  straight  uniform  Rod. — A  uniform 
rod  in  Mechanics  means  one  in  which  the  weight  per  unit  of 
length  is  the  same  throughout  the  length  of  the  rod  ;  that  is, 
such  that  if  the  rod  be  divided  up  into  any  number  of  equal 

lengths,  however  short,  the  weight  of  each  of  these  lengths  is 
the  same. 

A  Pft   RS   B 
O 

Fig.  79, 

Let  AB  he  the  rod  and  0  its  middle  point. 
Imagine  the  rod  to  be  divided  into  an  indefinitely  large 

number  of  elementary  pieces  of  equal  length. 

Let  PQ,  RS  be  two  of  these  elements  equally  distant  from  0. 
Now  each  of  these  pieces  being  of  infinitesimal  extent  may  be 

supposed  to  have  its  weight  all  acting  at  one  point,  the  point  at 
which  the  piece  is  situated. 

The  weights  of  the  two  pieces  have  for  resultant  a  force  equal 

to  the  sum  of  the  weights  acting  at  0. 

In  the  same  way  all  the  elementary  pieces  may  be  grouped 
together  in  pairs  like  these  two,  the  resultant  of  the  weight  of 
each  pair  acting  through  0. 

Thus  the  weight  of  the  whole  rod  acts  through  0,  oi-  0  is  the 
required  Centre  of  Gravity. 

Experiment  17. — Take  a  heavy  rod  and  find  its  weight,  and  find 
on  what  point  it  will  balance.  This  point  is  its  C.G.,  and  is,  of 
course,  the  middle  point  of  the  rod  if  it  is  uniform.     Mark  the  C.G. 

Suspend  the  rod  horizontally  by  two  spring  balances  on  opposite 
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sides  of  the  C.G.,  and  at  different  distances  from  it.  Note  the 
indications  of  the  balances. 

Show  that  the  forces  indicated  have  for  equilibrant  a  force  equal 
to  the  weight  of  the  rod  acting  through  its  C.G. 

Suppose,  for  example,  the  rod  weighs  8  lbs.,  and  the  balances  are 
attached  at  points  6  inches  and  18  inches  from  the  C.G. 

The  indications  in  the  balances  should  then  be  6  and  2  lbs.'  wt. 

In  many  questions  in  Statics  about  rods  no  account  is  taken 

of  any  dimensions  except  the  length,  that  is,  the  thickness  in 
any  direction  is  supposed  to  be  indefinitely  small  as  compared 

with  the  length,  or  the  rod  is  considered  as  a  material  straight 
line. 

Any  straight  uniform  rod  will  have  its  C.G.  in  its  middle 
section,  that  is,  in  the  section  of  it  at  right  angles  to  its  length 

midway  between  its  ends.  This  may  easily  be  seen  by  reasoning 
similar  to  the  above.  In  a  question  in  which  we  take  no  account 
of  the  extent  of  this  section,  but  consider  it  all  as  one  point,  the 

C.G.  of  the  rod  is  at  this  point. 

A  heavy  bar  or  rod  not  otherwise  described  is  to  be  supposed 
uniform. 

Example. — A  uniform  beam  10  feet  long  weighing  50  lbs. 
rests  horizontally  on  two  supports  at  its  ends,  and  carries 

a  weight  of  30  lbs.  at  a  point  4  feet  from  one  end.  What 
are  the  pressures  on  the  supports  ? 

Let  AB  represent  the  beam,  C  its  middle  point. 

Let  P,  Q  lbs.'  wt.  be  the  pressures  on  the  supports  at  A 
arndB. 

30'
 

50 
Fig.  80 

The  weight  of  the  beam  may  be  supposed  to  act  at  C. 

By  moments  about  B, 

P. 10  =  50. 5  +  30. 6, 

P  =  43. 
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And  p  +  Q  =  80. 

..   Q  =  37. 

The  required  pressures  are  43  and  37  Ibs.'  wt. 

Example. — AB  is  a  beam.  If  weights  5,  10,  5  lbs.  are 
attached  at  points  3,  8,  9  feet  from  A,  the  beam  will 

balance  on  a  point  6  feet  from  A.  If  the  10  lb.  weight  is 
removed,  the  beam  will  balance  on  a  point  5  feet  from  A. 
What  is  the  weight,  and  where  is  the  C.G.  of  the  beam  ? 

Let  the  weight  be  W  lbs.'  wt.,  and  the  distance  of  the  C.G. 
from  A  X  feet. 

»5  -kio 
Fig.  81. 

In  the  first  case,  the  upward  pressure  at  the  balancing  point 

isW  +  20  lbs.'  wt. 
Then  by  moments  about  A^ 

W.i-  +  5  .  3  4-10  .  8  +  5  .  9  =  (W  +  20)6. 

In  the  second  case,  the  upward  pressure  at  the  balancing 

point  is  W  +  10  lbs.'  wt. 
By  moments  about  A^ 

W.^'+5  .  3  +  5  .  9  =  (W  + 10)  5. 
These  equations  reduce  to 

W^  +  140  =  6W  +  120, 

W^'+60  =  5W  +  50, 
W=10, 

.^•  =  4. 

The  beam  weighs  10  lbs.,  and  its  C.G.  is  4  feet  from  the 
end  A. 

Combined  Centre  of  Gravity  of  several  Bodies.— If  we 
know  the  weights  and  C.G.s  of  several  bodies,  the  combined  C.G. 

of  them  when  rigidly  joined  together  in  any  manner,  and  con- 
sidered as  one  body,  can  easily  be  found. 
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Suppose  seA^eral  bodies  of  weights  Wj,  W2,  "W3,  etc.,  have  C.G.s 
at  A,  B,  G,  etc. 

The  C.G.  of  the  combination  is  the  point  at  which  the  resultant 

of  the  weights  of  all  the  separate  elements  acts. 
Now  the  weights  of  the  elements  of  the 

first   body  have   resultant  Wj  at  A,  the 

weights    of   the    elements    of    the    second 

body  have  resultant  ̂ "2  at  B,  and  so  on. 
"W"  The  final  resultant  is  that  of  these  re- 

sultants. 

Thus,   to  find   the   point  at  which  the 
entire  weight  may  be  .supposed  to  act,  we 

may   suppose   that   the   bodies   are   small 
particles,  of  weights  W^,  W2,  W3,  etc.,  situated  at  J,  J5,  C,  etc. 

The  final  Centre  of  Gravity  is  the  same  as  that  of  particles,  of 
weights  equal  to  those  of  the  bodies,  and  situated  at  the  Centres 
of  Gravity. 

1 W. 

w. 

Fig.  82. 

Example. — Find  the  C.G.  of  a  body  composed  of  three  solid 
spheres  rigidly  joined  with  their  surfaces  in  contact,  and 
their  centres  in  a  straight  line,  the  radii  of  the  spheres 

being  3,  4,  5  inches. 

Let  A,  B,  Che  the  centres  of  the  spheres. 

The  volumes,  and  .•.  the  weights  of  the  spheres  are  pro- 
portional to  the  cubes  of  their  radii,  and  may  be  taken  as 

27,  64,  125. 
The  C.G.  lies  on  the  line  ABC.     Let  it  be  x  inches  from  A. 
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By  moments  about  A, 

^;(27  +  64  +  125)  =  7.64  +  16.  125, 
7.64  +  16.125     7.8  +  2.125 

Hi 

216  27 

_  306  ̂ 34 ~  27  "3 

The  C.G.  is  between  A  and  C,  at  11^  inches  from  A. 

[This  may  be  checked  by  finding  the  distance,  y  inches,  of  the 
C.G.  from  C. 

Thus  216y  =  64.9  +  27.16, 

a  result  which  agrees  with  the  otliei-.] 

Example. — A  uniform  rod  AB  of  weight  W,  8  feet  long, 
can  turn  freely  about  A.  It  is  held  in  a  horizontal  posi- 

tion by  means  of  a  string  attached  to  B,  and  makiiig  an 

angle  of  45"  with  the  rod.  A  body  of  weight  W  is attached  to  the  rod  at  6 

feet  from  A.  Find  the 

tension  in  the  string  and 
the  reaction  at  J.  \  ̂ ^^ 

The  resultant  of  the  weights 

is  a  force  2W  acting  verti- 
cally downwards  through 

6^,  a  point  6  feet  from  A. 
Let  T  be  the  tension  in  the 

string,  and  R  the  reaction 
at  A. 

Let  the  vertical  through  G 
meet  the  stiing  in  0. 

Then  the  third  force  R, 

keeping  the  rod  in  equili- 
FiG  84. 

brium  with  T  and  2W,  must  also  act  through  0. 

Draw,  through  J,  AH  parallel  to  OB^  meeting  the  vertical 
through  G  in  H.     Then  HAO  is  triangle  of  forces. 

_T__  R  _2W 
■   HA~AO~OH' 
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Now  AG^GH^h, 

and  GO^GB  =  Z. 

:.    HA  =  n/50,  and  A0= \fS4. 

T  ̂   B  ̂ W 

v/50     V34      4", The  required  tension  and  reaction  are 

W\/50         ,   Wv^34 
4  4 

In  this  question  it  should  be  noticed  how  the  fact  is  used  that 

the  three  forces  keeping  a  body  in  equilibrium  must  all  pass 

through  one  point  if  they  are  not  all  parallel.  By  noticing  this 
we  are  able  to  get  the  direction  of  R,  and  thus  get  a  triangle  of 
forces. 

The  question  might  have  been  otherwise  solved  by  the  follow- 
ing method. 

Find  T  by  taking  moments  about  A. 

Then  find  R  as  the  equilibrant  of  2W  and  T  inclined  at  135°. 

Exercises  V.  a. 

1.  Find  the  C.G.  of  weights  4,  5,  7,  2,  11  ounces  placed  at  dis- 
tances of  1  inch  apart  along  a  straight  rod. 

2.  A  bar  1  foot  long,  M'eighing  2  lbs.,  has  a  5  lb.  wt.  attached  to 
one  end.  What  weight  must  be  attached  to  the  other  end  to  make 
it  balance  at  a  poi«t  2  inches  from  the  former  end  ? 

3.  A  rod  is  14  inches  long  and  weighs  2  ounces,  and  will  balance 
on  a  point  6  inches  from  one  end.  Where  must  a  ̂ -ounce  weight  be 
attached  to  make  it  balance  at  its  middle  point  ? 

4.  A  uniform  plank  16  feet  long,  weighing  5  lbs.  per  foot,  rests  on 
a  wall  with  5  feet  projecting  beyond  the  end.  How  far  can  a  boy, 
weighing  5  stone,  walk  along  the  plank  from  the  end  of  the  wall 
without  upsetting  the  plank  ? 

5.  An  iron  crowbar  5  feet  long  has  a  7  lb.  weight  attached  to  one 
end,  and  balances  about  a  point  2  feet  from  that  end.  What  is  the 
weight  of  the  bar  ? 

6.  A  rod  weighs  50  grams.  With  a  weight  of  4  grams  hung  on 
one  end  it  balances  at  a  point  1  metre  from  this  end.  What  is 
its  length  ? 

7.  A  rod  weighs  50  grams.  With  a  weight  of  4  grams  hung  on 
one  end  it  balances  at  a  point  1  metre  from  the  other  end.  What  is 
its  length  ? 
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8.  A  beam  A  B  weighs  50  lbs, ,  and  is  supported  on  two  props  at 
its  ends.  If  a  weight  of  70  lbs.  is  placed  2  feet  from  A,  the  pressure 
on  B  is  30  lbs, ;  and  if  a  weight  of  60  lbs.  is  placed  at  2  feet  from  B, 
the  pressure  on  B  is  70  lbs.  What  is  the  length  of  the  beam,  and 
where  is  its  C.G.? 

9.  ABCi^  a  triangle  in  which  AB  =  AG=  13  inches,  BC=  10  inches. 
What  are  the  distances  from  the  points  A,  B,  C  of  the  C.G.  of  3 
equal  heavy  particles  placed  nt  A,  B,  02 

10.  ABC  is  a  triangle  in  which  AB  =  >^,  AG=\%  BC=3.  Three 
particles  of  weights  3,  2,  1  are  placed  at  A,  B,  C.  Show  that  the 
C.G.  of  the  tliree  particles  is  at  the  middle  point  of  the  perpendicular 
from  A  on  BC. 

11.  D,  E,  F  are  the  middle  points  of  the  sides  of  the  triangle 
ABC.  Show  that  the  C.G,  of  three  equal  particles  at  Z),  E^  F  is 
the  same  as  that  of  three  equal  particles  at  ̂ ,  B,  C. 

12.  In  the  triangle  ABC  three  particles  of  weights  2,  3,  3  are 
placed  ?it  A,  B,  C.  If  AB  —  AG=h,  and  BC=6,  find  the  distances 
of  the  C.G.  of  the  particles  from  A,  B,  G. 

13.  Two  uniform  rods  4  and  3  feet  long,  and  weighing  6  and  8  lbs, 
respectively,  are  joined  in  a  straight  line.  Find  their  Centre  of 
Gravity. 

14.  A  rod  of  circular  section  is  of  uniform  thickness  throughout 
half  its  length,  and  of  half  the  thickness  throughout  the  other  half 
of  its  length.  Show  that  the  weight  which  must  be  attached  to  the 
smaller  end  to  make  the  rod  balance  about  its  middle  point  is  j^  ̂^ 
the  weight  of  the  rod. 

15.  Three  circular  discs  cut  from  the  same  plate  are  fastened  by 
their  edges,  with  their  centres  in  a  straight  line.  Their  diametres 
are  2,  4,  and  6  inches.     Where  is  their  C.G.? 

16.  Three  circular  discs  of  radii  3,  5,  and  7  units,  of  the  same 
material  and  of  thicknesses  proportional  to  5,  3,  and  1,  are  con- 

nected by  their  edges  with  their  centres  in  a  straight  line.  How 
far  from  the  centre  of  the  smallest  disc  is  the  combined  Centre  of 
Gravity  ? 

Mass. — The  mass  of  a  body  is  the  quantity  of  mattei-  that  it 
contains. 

The  mass  of  a  body  is  properly  measured  by  the  difficulty  of 
setting  it  in  motion  by  the  action  of  a  given  force,  that  is,  by  its 
inertia.  This,  however,  is  a  question  for  the  science  of  the 

action  of  forces  in  producing  motion. 

For  questions  in  Statics  we  may  suppose  the  mass  of  a  body 
to  be  measured  by  its  weight.  For,  in  ordinary  circumstances, 

the  weight  is  always  proportional  to  the  mass.     A  body  of  mass 
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1  lb.  has  a  definite  weight  which  we  call  a  pound  weight ;  a  body 
of  mass  2  lbs.,  whether  made  of  the  same  or  of  a  different 

material,  has  just  twice  as  much  weight,  and  so  on. 

Mass  and  Weight  compared. — Great  care  must  be  taken  to 
distinguish  between  the  mass  and  the  weight  of  a  body.  These 
are  quantities  which  may  very  easily  be  confused,  because,  in 

general,  weight  is  proportional  to  mass,  and  weight  is  employed 
to  determine  mass,  and  the  same  number  is  used  to  indicate  the 

weight  and  the  mass  of  a  body.  Thus  we  weigh  a  body,  and  if 

we  find  that  it  has  5  lbs.'  weight,  or  "  weighs  5  lbs.,"  we  infer 
that  its  mass  is  5  pounds.  Then  the  number  5  denotes  the  mass 

in  pounds  and  the  weight  in  lbs.'  weight. 
Mass  and  weight  are,  however,  entirely  different  quantities. 
Mass,  we  may  say  for  short,  as  has  been  said  above,  means 

quantity  of  matter,  and  its  true  significance  belongs  to  Dynamics, 
or  the  science  of  motion. 

Weight,  on  the  other  hand,  is  a  force,  namely,  the  force  with 
which  the  earth  attracts  the  body  to  itself. 

Again,  the  mass  of  a  body  is  a  perfectly  unalterable  quantity 
as  long  as  the  body  remains  the  same,  that  is,  has  nothing  added 
to  or  taken  from  it :  but  the  weight  of  a  body  may,  and  does  to  a 

slight  extent,  vary  as  it  is  taken  from  one  locality  to  another, 

for  it  depends  on  the  latitude  in  which  the  body  is,  and  on  its 

height  above  sea-level. 
If  the  body  were  taken  right  away  from  the  influence  of  the 

earth,  it  would  lose  its  weight  completely.  If  it  were  placed  on 

the  surface  of  another  heavenly  body,  what  may  then  be  called 
its  weight,  the  attraction  of  this  body  on  it,  would,  as  a  rule,  be 

very  different  from  its  weight  on  the  earth. 

Mass  and  weight,  then,  are  two  entirely  different  sorts  of 

things.  Mass  is  invariable,  and  is  what  we  may  call  an  inherent 

property  of  a  body  ;  weight  is  variable,  and  is  an  accide7ital 

circumstance  ;  although  within  the  limits  of  our  experience,  the 
two  are  practically  always  in  direct  proportion  to  each  other  ; 
and  this  fact  is  employed  to  measure  mass,  because  weight  is 
easily  determined. 

Density. — If  two  bodies  are  such  that  one  weighs  more,  bulk 
for  bulk,  than  the  other,  or,  as  we  have  seen,  has  a  greater 
mass,  bulk  for  bulk,  than  the  other,  it  is  said  to  be  denser,  or 
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to  have  a  greater  density,  than  the  other.  The  exact  definition 
of  density  is  as  follows  : 

The  deiuity  of  a  substance  is  its  mass  per  imit  of  volume. 
The  measure  of  a  density  will  depend  upon  the  units  of  mass 

and  of  volume  employed. 

Foi'  instance,  using  a  foot  and  a  pound  as  units,  the  density  of 
water  means  the  number  of  pounds  in  a  cubic  foot,  and  is  about 

62-5. 
But  if  we  use  a  centimetre  and  a  gram  as  units  of  length  and 

mass,  the  density  of  water  is  the  mass  in  gi-ams  of  a  cubic 
centimetre,  and  is,  approximately,  1. 

It  must  be  noticed  that  density  is  a  quality  of  a  substance^ 
without  reference  to  the  quantity  of  it  in  question.  But  we  can 

only  speak  of  the  mass  of  a  definite  amount  of  a  given  material. 
Thus,  we  may  speak  of  the  density  of  lead,  but  of  the  mass  of  a 
definite  quantity  of  lead. 

Specific  Gravity. — It  is  often  convenient  to  compare  the 
density  of  a  substance  with  that  of  another  substance  used  as  a 

standard  of  comparison.  Thus,  water  has  a  certain  density 

measured  by  the  number  of  pounds  mass  in  a  cubic  foot  of 

water.  This  number  is  about  62*5.  The  number  of  pounds  mass 
in  a  cubic  foot  of  iron  would  be  found  to  l)e  about  7  times  as 

great,  or  about  441.  This  number  measures  the  density  of  iron. 

Thus,  the  density  of  iron  is  7  times  as  great  as  that  of  water. 
Water  is  used  as  the  standard  substance  with  which  other 

substances  are  compared.  The  ratio  of  the  density  of  the  iron  to 

that  of  water  is  called  the  relative  density  of  the  iron,  or  some- 
times its  specific  gravity. 

It  is  clear  that  if,  instead  of  using  cubic  feet  of  water  and 
iron,  we  used  any  other  equal  volumes  of  them,  the  ratio  of  the 
mass  of  iron  to  the  mass  of  water  would  always  be  the  same. 

Thus,  the  specific  gravity  may  be  defined  as  the  ratio  of  the 
masses  of  any  equal  volumes. 

We  have  the  following  general  definition  : 

The  specific  gravity  or  relative  density  of  a  substance  is : 

(a)  the  ratio  of  its  density  to  that  of  water,  or 

{b)  the  ratio  of  the  mass  of  any  volume  of  it  to  that  of  an  equal 
volume  of  water. 
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The  name  Specific  Gravity  is  commonly  abbreviated  by  the 
letters  S.G. 

In  the  British  system, 

S.G.ofabody=f5^'y4My ^     density  or  water 

_  density  of  body 
~  62^5  ' 

because  the  number  of  pounds  of  water  in  a  cubic  foot  =  62*5. 

Or,  Density  of  body  =  S.G.  of  body  x  62-5. 
In  the  metric  system, 

S.G.  of  body  =  J   -J   c.   r^= density  of  body, 
•^     density  of  water  ''  "^ ' 

because  the  number  of  grams  of  water  in  a  cubic  centimetre  =  L 

Exercises  V.  b. 

1.  Explain  what  is  meant  by  the  statement  that  the  specific 
gravity  of  lead  is  11. 

Find  the  volume  occupied  by  25  lbs.  of  lead,  assuming  that  1  cubic 
foot  of  water  weighs  1000  oz.     (Oxford  Locals,  1897.) 

2.  Define  density.  What  is  the  weight  of  a  brick  25  cm.  long, 

12  cm.  wide,  and  8  cm.  thick  ?  (Specific  gravity  of  the  brick  =  2'5, 
weight  of  1  CO.  of  water  =  1  gram.)  (Camb.  Jr.  Loc,  Stat.  Dyn. 
and  Hydro.,  1897.) 

A  lamina  is  a  figuie  consisting  of  a  plane  or  flat  sheet  of  some 
material,  such  as  cardboard  or  metal,  so  thin  that  no  account 

need  be  taken  of  its  thickness. 

Every  portion    of    the   material   of 
such  a  body  may  be  supposed  to  lie  in 

one  plane,  the  plane  of  either  surface. 
The  Centre  of  Gravity,  therefore,  being 

the  centre  of  parallel  forces  acting  at 

points  of  this  plane,  lies  in  the  plane  too. 
The  Centre  of  Gravity  of  a  lamina 

may  easily  be  found  by  an  experiment 

—  Experimental       depending  on  the  principle  that,  if  a 

fam'na!"^*'°''  ""^  ̂'^'  ""^  ̂      ̂ ody  is  freely  suspended  from  a  point, 
its  Centre  of  Gravity  must  be  in  a 

vertical  line  with  the  point  of  suspension. 
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Suspend  the  body  by  any  point,  such  as  A,  and  draw  on  its 
surface  the  vertical  straight  line  AK  passing  through  A. 

Again,  suspend  it  at  B,  and  draw  the  vertical  straight  line 
through  B. 

The  C.G.  is  in  J  ̂   and  in  BL,  and  is  therefore  at  G,  the  point 
where  AK  and  BL  intersect. 

For  accuracy,  the  points  A  and  B  should  be  so  chosen  that 
AK  and  BL  make  a  considerable  angle  with  each  other.  For 

if  the  angle  between  these  lines  is  small,  a  small  error  in  the 
position  of  either  of  them  causes  a  considerable  error  in  the 

position  of  G. 
A  uniform  lamina  is  one  in  which  the  weight  per  unit  area 

is  the  same  throughout,  or  such  that  if  it  be  divided  into  any 

number  of  equal  pieces,  however  small,  the  weights  of  all  the 
pieces  are  equal. 

Centre  of  Gravity  of  Uniform  Parallelogram.— Divide  the 
parallelogram  A  BCD  into  indefinitely   narrow  strips,  such  as 

KL,    by    means    of    straight 
lines  drawn  parallel  to  A  D. 

The  C.G.s  of  all  these  strips 
are  at  their  middle  points, 
and  these  points  all  lie  on 
the  straight  line  joining  the 
middle  points  of  AD  and  BC. 

Thus  the  C.G.  of  the  paral-     D  L      H  C 
lelogram  is  on  EF.  Fig.  SO.-C.G.  of  parallelogntu.. 

Similarly  it  is  on  GH,  the 

straight  line  joining  the  middle  points  of  AB  and  DC. 
Therefore  the  Centre  of  Gravity  of  the  parallelogram  is  the 

point  of  intersection  of  the  straight  lines  joining  the  middle 
points  of  opposite  sides. 

This  is  the  same  as  the  point  of  intersection  of  the  diagonals. 

Centre  of  Gravity  of  Uniform  Triangular  Lamina.— Divide 

the  triangle  ABC  into  indefinitely  narrow  strips,  such  as  A'Z,  by 
means  of  straight  lines  drawn  parallel  to  BC. 

The  C.G.s  of  all  these  strips  are  at  their  middle  points,  and 

these  points  all  lie  on  a  straight  line  AD  drawn  from  A  to  the 
middle  point  of  BC. 

Therefore  the  C.G.  of  the  triangle  lies  on  AD. 
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Fig.  87.  -C.G.  of  triangle. 

Similarly  it  lies  on  the  straight  line  joining  B  to  the  middle 

point  of  AC. 
Hence  the  C.G.  of  the  triangle  is  at  the  point  of  intersection 

of  any  two  of  the  straight  lines 

joining  angular  points  to  the 
middle  points  of  the  opposite 
sides. 

The  straight  lines  joining  the 

angular  points  of  a  triangle  to 
the  middle  points  of  the  opposite 
sides  are  called  the  medians  of 

the  triangle. 
The  result  obtained  above  for 

the  position  of  the  C.G.  of  a  tri- 
angle  affords   an    indirect  proof 

that  the  three  medians  meet  at  one  point,  or  are  concurrent. 
Another  construction  is  often  useful  for  finding  the  Centre  of 

Gravity  of  a  triangle. 
Draw  the  medians  A  Z),  BE  meeting  in  G.     Join  BE. 

Then,  ".•  D  and  E  are  the  middle  points  of  CB^  CA, 
:.   BE  is  parallel  to  BA,  and  DE=^BA. 

By  similar  triangles  GBE,  GAB, 

^  DG_DE_^ 

GA~BA~^' 
:.   DG=^GA. 

:.   BG=IBA. 

This  leads  to  the   following  con- 
struction for  G  : 

Draw  any  median,  such  as  A  B. 

Take  BG  equal  to  ̂ BA.     Then  G 
is  the  C.G.  of  the  triangle. 

From  either  of  these  constructions  for  G  it  is  seen  that 

The  Centre  of  Gravity  of  a  uniform  triangle  is  the  same  as  that 
of  three  equal  heavy  particles  at  its  angular  points. 

Centre  of  Gravity  of  the  Perimeter  of  a  Triangle.— Suppose 
the  three  sides  forming  the  perimeter  of  the  triangle  ABC  to  be 
made  of  the  same  uniform  material,  as,  for  instance,  when  a 

B  D  C 

Fig.  88.— C.G.  of  triangle. 
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uniform  piece  of  wire  is  bent  into  the  shape  of  the  three  sides  of 
a  triangle. 

Let  the  lengths  of  BC,  CA,  AB 
be  «,  b,  c. 

Make  Z),  E,  Fthe  middle  points 
of  the  sides. 

The  masses  of  the  sides  are  pro- 
portional to  «,  h,  c,  and  have  their 

C.G.s  at  Z),  E,  F. 

Let  the  length  of  the  perpen- 
dicular from  A  on  BC  be  h. 

Then  the  length  of  perpendicular 
h 

from  D  on  EF 
Fig.  89.— C.G.  of  perimeter  of  tri 

angle. 

If  distance  of  C.G.  of  perimeter  from  EF  is  x^  by  moments 
about  EF, 

X .{a-\-h-\-(t)  =  -.  a. 

ha area  of  triangle 

2(a-j-6-j-c)  a-l-6-fc 

Similarly,  the  distance  of  the  C.G.  of  the  perimeter  from  FD 
and  DE  are  each  equal  to  this  same  quantity.  Thus  the  C.G.  is 

equidistant  from  the  sides  of  the  triangle  DEF. 
Or,  the  required  C.G.  is  the  centre  of  the  circle  inscribed  m 

the  triangle  formed  by  joining  the  middle  points  of  the  sides  of 
the  given  triangle. 

Centroid. — If  we  take  any  geometrical  figure  and  suppose  it 
to  be  a  uniform  lamina,  or  a  lamina  of  uniform  mass  per  unit 

area,  and  find  its  Centre  of  Gravity  on  this  supposition,  the 
point  so  found  is  called  the  Centroid  of  the  figure. 

Experiment  18. — Take  a  piece  of  stout  cardboard  and  cut  out  a 
figure  of  irregular  shape.  Suspend  it  from  a  point  in  the  edge,  and 
hang  a  small  weight  by  means  of  a  string  from  the  same  point. 
Draw,  by  the  help  of  this  string,  the  vertical  through  the  point  of 
suspension.  Again,  suspend  the  cardboard  from  another  point,  so 
that  the  line  first  drawn  rests  about  horizontal.  Draw  the  new 
vertical  through  the  second  point  of  suspension.  Thus  find  the  C.G., 
which  is  the  point  of  intersection  of  these  two  lines. 

Show  that  from  whatever  point  the  cardboard  is  suspended,  the 
C.G.  rests  vertically  below  this  point. 
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Show  that  if  a  hole  is  made  through  the  C.G.,  and  the  cardboard 
be  carried  on  a  nail  passed  through  this  hole,  it  will  rest  in  any 
position. 

Summary. 

The  Centre  of  Gravity  or  Centre  of  Mass  of  given  particles  rigidly 
connected  together,  or  of  a  body,  is  the  point  through  which  the 
resultant  of  the  weights  of  all  the  infinitesimal  particles  always  acts, 
however  the  body  may  be  turned  about. 

A  body  will  balance  on  its  Centre  of  Gravity  if  this  point  is  fixed, 
in  whatever  position  the  body  may  be  placed. 

The  forces  acting  on  a  body  and  holding  it  in  equilibrium  are  the 
same  as  if  the  weight  of  the  body  acted  through  its  Centre  of  Gravity. 

The  C.G.  of  a  straight  uniform  rod  supposed  to  have  no  thickness 
is  at  its  middle  point. 

The  combined  C.G.  of  several  bodies  is  found  by  supposing  each  to 
be  concentrated  at  its  own  C.G. 

The  mass  of  a  body  is  the  quantity  of  matter  that  the  body 
contains.  It  must  be  carefully  distinguished  from  weight,  which  is 
the  force  with  which  the  earth  attracts  the  body. 

Mass  is  unalterable  ;  weight  depends  slightly  on  latitude  and 
altitude. 

The  density  of  a  body  is  its  mass  per  unit  volume.  Its  measure 
depends  on  the  unit  of  mass  and  on  the  unit  of  length  employed. 

The  density  of  water,  using  pounds  and  feet,  is  about  62'5. 
The  specific  gravity  of  a  substance  is  the  ratio  of  its  density  to 

that  of  water,  taking  water  as  the  standard  substance. 
It  follows  that,  for  any  substance  : 

In  British  system  density =S.G.  x  62*5  ; 
In  metric  system  density  =S.G. 

The  Centre  of  Gravity  of  a  lamina  can  be  found  experimentally  by 
suspending  it  in  turn  from  two  points,  and  drawing  the  vertical 
through  each  of  these  points  while  it  is  suspended  by  it,  and  taking 
the  point  of  intersection  of  these  verticals. 

The  C.G.  of  a  uniform  parallelogram  is  the  intersection  of  its 
diagonals. 

The  C.  G.  of  a  uniform  triangle  is  the  point  of  intersection  of  its 
medians. 



CHAPTER  VI. 

CENTRE  OF  GRAVITY.— (Continued.) 

W, 

w. 

w„ 

Fig.  90. 

Centre  of  Gravity  of  several  Particles  in  one  Plane. — 
Suppose  we  have  several  particles  of  given  weights,  W^,  W2,  W3, 
etc.,  in  a  plane,  and  suppose  their  distances  from  a  given  line  in 

the  plane  to  be  Aj,  Ag,  A3,  etc.  Then 
we  may  find  the  distance  h  of  the 
C.G.  from  the  line  as  follows  : 

Suppose  the  plane  containing 
the  line  and  the  particles  to  be 

placed  horizontally,  and  consider 
the  moments  of  the  weights  about 
the  line.    

The  moment  of  the  whole  weight 

Wi  +  W.^  +  W3  +  ...  about  the  line 
must  be  the  same  as  the  sum  of  the  moments  of  the  separate 

weights. 
Thus 

(Wi  +  W2  +  W3+...)A=WiAi+W2A.2  +  W3A3+.... 

h  _  Wi  Ai  +  W2A2  +  ̂3^3  +  . . . 
••  W1  +  W2  +  W3+... 

It  may  happen  that  some  of  the  particles  are  on  one  side  of 
the  line  and  some  on  the  other.  Then  the  moments  of  the 

weights  about  the  line  are  in  opposite  senses.  Thus  the  moments 
of  the  weights  on  one  side  of  the  line  must  be  counted  positive, 

and  of  those  on  the  other  side  negative,  in  the  sum  W1A1  +  — 
We  may  decide  to  call  all  the  distances  on  one  side  of  line 

positive,  and  those  on  the  other  side  negative.     Then  the  sign  of 
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A,  got  from  the  formula  given  above,  will  determine  on  which 
side  of  the  line  the  Centre  of  Gravity  is. 

If  the  distances  of  the  particles  from  another  straight  line 
not  parallel  to  the  first  are  also  known,  we  can  determine  the 

distance  of  the  C.G.  from  this  straight  line  as  well,  and  thus 
completely  determine  its  position. 

Suppose  the  two  given  straight  lines  are  called  Ox,  Oy,  and 
are  at  right  angles  to  each  other.  It  is  clear  that  the  position 
of  a  point  in  the  plane  is  fixed  if  we  know  its  distances  from  Ox 

and  Oy^  and  on  which  side  of  each  of  these  it  lies.  We  may  call 
distances  on  one  side  of  each  of  these  lines  positive,  and  those 
on  the  other  side  negative. 

Ox,  Oy  are  then  called  Axes,  and  the  distances  of  any  point 

from  them,  taken  with  their  proper  signs,  are  called  the  Co- 
ordinates of  the  point. 

Experiment  19. — Suspend  the  divided  bar  at  its  middle  point  0, 
so  that  it  balances.  Place  any  weights  at  known  distances  to  the 
right  of  0,  and  balance  these  by  a  weight  placed  at  a  suitable 
point  on  the  left  of  O.  For  instance,  if  we  use  weights  1,  2,  3  lbs. 
at  distances  12,  6,  and  8  inches  from  O  respectively,  these  could  be 
balanced  by  4  at  12  inches  to  the  left  of  O. 
Now  find  the  C.G.  of  all  the  weights  on  the  right  of  O,  and  place 

them  all  at  it.     In  the  case  mentioned  it  is  8  inches  from  0. 

Notice  that  these  are  still  balanced  by  the  same  weight  on  the  left 
in  the  same  position  as  before. 

Experiment  20. — Take  a  piece  of  stiff  cardboard  and  suspend  it 
by  two  strings  at  points  A  and  B  at  its  edges,  so  tliat  A  and  B  are 
at  the  same  horizontal  level.  Draw  tlie  straight  line  AB.  Place 
several  weights  on  one  side  of  ̂ J5  at  measured  distances  from  it. 
For  instance,  we  may  use  10,  20,  40,  50  grams  at  distances  16,  20,  7, 
12  centimetres  from  AB.  And  place  a  weight  on  the  other  side  of 
^5  in  a  suitable  position  to  make  the  cardboard  balance  horizontally. 
Now  find  the  distance  from  AB  oi  the  C.G.  of  the  first-named 

weights.     In  the  given  case  it  is  12  centimetres. 
Draw  a  line  parallel  to  -4^  and  at  this  distance  from  it.  And 

place  these  weights  all  on  this  line,  anywhere  along  it. 
Notice  that  they  are  still  balanced  by  the  same  weight  on  the 

other  side  of  .45  in  the  same  position  as  before. 

We  see  now  that,  if  the  masses  of  any  number  of  particles  are 

known,  and  their  co-ordinates,  with  reference  to  two  axes,  the 
co-ordinates  of  the  C.G.  of  the  particles  can  at  once  be  found. 
This  is  illustrated  in  the  following  example. 
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O B 

Example. — AOB^  COD  are  two  straight  lines  in  a  plane  at 
right  angles  to  each  other.  Four  particles  of  masses  2,  2, 
3,  3,  are  situated  in  the  angles  BOC,  CO  A,  AOB,  BOB 

respectively,  and  so  that  the  distances  of  the  particles 
from  the  lines  CD,  A  B  have  the  following  pairs  of  values : 

2,  3  ;  3,  2  ;  2,  3  ;  3,  2.     Where  is  the  Centre  of  Gravity  ? 

Let  the  distances  of  the  C.G.  from  CD  towards  B,  and  from 
AB  towards  C  be  .r,  y. 

The  entire  mass  =  10. 

By  moments  about  CD, 

10^  =  2.2-2.3-3.2  +  3.3 =  1. 

•■•    ̂   =  i^n.  A" 
By  moments  about  AB, 

10y  =  2.3  +  2.2-3.3-3.2 
=  -5. 

•••    .y=-^--*. 
The  C.G.  is  at  G,  so  that  its 

distance  from  CD  towards  B  is 
from  AB  towards  D  is  L 

Notice  that  we  have  supposed  ?/  to  be  the  distance  of  G  from 
AB  measured  towards  C     The  negative  value  of  y  denotes  that 
G  is  on  the  side  of  AB  away  from  C     In  fact,  since  the  sum  of 

the  numerical  values  of  the  moments  of  the  two  masses  3,  3 
about  AB  is  greater  than  that  for  the  two  masses  2,  2,  the  Centre 
of  Gravity  must  be  on  the  same  side  of  ̂ 5  as  the  masses  3,  3. 

Avoiding  the  difficulty  of  Signs.— To  avoid  the  difficulty  of 
signs  we  may  reason  as  follows  : 

Sum  of  moments  of  the  masses  3,  3  about  AB  is 
3.3  +  3.2  =  15. 

Sum  of  moments  of  the  masses  2,  2  about  AB  is 

2.3  +  2.2  =  10. 

.*.    resultant  moment  about  AB  is  in  same  sense  as  that  of 
moments  of  the  masses  3,  3,  and  is  equal  to  5. 

.'.    C.G.  is  on  side  of  AB  towards  D,  at  distance  i^  =  ̂- 
Similarly  we  may  determine  on  which  side  of  CD  the  C.G.  is, 

and  its  distance  from  CD. 

D 1''1G.   itl. 

and  its  distance 
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Example. — A  BCD  is  a  figure  composed  of  four  uniform 

bars  AB,  BG,  CD,  DA,  of  lengths  4,  4,  6,  4,  and  of  weights 

proportional  to  their  lengths.  AB  and  CD  are  parallel. 
Find  the  position  of  the  Centre  of  Gravity  of  the  figure. 

The  weights  of  the  bars  may  be  taken  as  4,  4,  6,  4,  acting  at 
K,  M,  L,  JV,  their  middle  points. 

A         K          B           Let    the    straight   lines   KL,   MN 

J         O 
\               meet  in  0. 

\^      4  at  1/  and  4  at  iT  are  equivalent 1 G           \            to  8  at  0. 

^            \        4  at  iT  and  6  at  Z  are  equivalent 
\                 f/^   in  nf    P    wViM-A 

"            „   ■-               "^                           LP     i    ̂  

PK=rZ- 
8  at  0  and  10  at  P  are  equivalent  to  18  at  G,  where 

OG     10     5 

GP~  8  ~4' *                                 ..    LP    2 

•     PK-'i^ LP    2 

LK~h' 
LP  =  ILK. 

:.    OP=^LK-iLK=^^LK. 

..    OG    5 

•     Gp-4' OG    5 

OP    9* 
0G=^  .  OP=^LK. 

:,    LG=ILK-^^LK=%LK, 
The  C.G.  is  on  the  line  LK  joining  the  middle  points 

oi  AB  and  DC,  %  of  the  length  from  L. 

This  result  may  also  be  obtained  in  the  following  manner, 

illustrating  the  advantage  of  the  method  of  moments. 

The  distance  of  each  of  the  points  N  and  M  from  CD  is 

\LK. 
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Let  X  be  the  distance  of  the  C.G.  from  CD. 

Then,  by  moments  about  CZ), 

(4  +  4  +  4  +  6)^  =  4.  Z/i +4.  ̂ Z/r+4.|Z/ir, 
18.r  =  8ZA^ 

x=^LK. 

A  body  of  known  Weight  and  known  Centre  of  Gravity- 
has  a  piece  of  known  Weight  and  known  Centre  of  Gravity 
removed.    To  find  the  Centre  of  Gravity  of  the  remainder. 

Let  W  be  the  weight  of  the  whole  body,  O  its  C.G. 

Let  w  be  the  weight  of  the  piece  re- 
moved, H  its  C.G. 

The  weight  of  the  remainder  is  W  -  w. 
Call  its  C.G.  K. 

Then,  since  the  body  is  made  of  the 

two  pieces  of  weights  w  and  W  —  w  ; 
.'.  the  forces  w  at  i/  and  W  — W  at 

K  have  for  resultant  W  at  G. 
From  this  we  infer  : 

(1)  That  G  is  on  the  straight  line  HK^  and  between  H  and  K. 

:.    K  is  on  IIG  produced. 

(2)  That  (W - w)  KG =Vi.HG. 
w 

KG=. .HG. 
W-w 

Hence  we  have  the  rule. 

Join  HG,  and  produce  it  to  /f,  so  that 
W 

KG HG. 

W-w 
Then  K  is  the  required  C.G. 

In  any  particular  example,  however,  it  is  recommended  not 
to  rely  on  remembering  the  rule^  but  to  work  it  out  by  the 
method  that  has  just  been  used. 

Example. — A  circular  metal  disc  has  a  circular  portion,  of 
diameter  equal  to  the  radius  of  the  disc,  bored  out,  and 

so  that  the  edge  of  the  piece  removed  passes  through  the 
centre  of  the  disc.     Where  is  the  C.G.  of  the  remainder  ? 
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Since  the  areas  of  circles  are  proportional  to  the  squares  of 

their  diameters,  the  weights  of  the  disc  and  the  piece 

removed  may  be  taken  as  4  and  1. 

.".    weight  of  piece  left  is  3. 
C.G.s  of  disc  and  piece  removed  are 

the  centres  A  and  B. 

Since  th^  disc  is  made   up   of  the 

piece  removed  and  the  piece  left, 

/.    A  lies  between  B  and  G,  the  re- 

quired C.G., 

Pj^  g^  .-.    G  is  in  BA  produced. And  since  the  weights  1  at  ̂   and 

3  at  6^^  are  equivalent  to  4  at  A, 

:.    Z.AG  =  \.AB', 

:.    AG=^. 3 

The  C.G.  of  the  remainder  is  on  the  line  joining  the 
centres  at  a  distance  from  the  centre  of  the  disc  of 

^  of  its  radius. 
The  C.G.  of  a  regular  body,  or  a  body  with  a  known  C.G., 

from  which  a  regular  portion  has  been  removed,  may  some- 
times be  more  conveniently  found  by  an  extended  application 

of  the  principle  of  moments,  as  will  now  be  shown. 

Consider  again  the  C.G.  of  the  portion  of  a  body  of  weight  W 

which  is  left  when  a  portion  of  weight  w  is  removed. 
The  resultant  of  the  weights  of  all  the  particles  of  the  entire 

body  is  a  force  W  acting  vertically  downwards  at  G. 

By  removing  the  portion  of  weight  w  we  remove  a  set  of 
forces  having  ret;nltant  w  acting  vertically  downwards  at  H. 

This  is  the  same  thing  as  inserting  a  force  w  acting  vertically 

upwards  at  H. 
Then  the  weight  of  the  remainder  is  the  resultant  of  the  two 

forces,  W  vertically  downwards  at  6^,  w  vertically  upwards  at  H. 
This  resultant  is  W  — W  vertically  downwards  at  a  point  on 

HG  produced,  at  K  say. 

By  moments  about  G  we  have 

{^-vr)KG=w.HG. 

:.    KG=^     .HG. W-w 
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Tlie  following  question  will  illustrate  the  application  of  this 
method. 

Example. — A  cubical  block  of  iron,  10  inches  edge,  has  a 

piece  removed,  8x8x9  inches  in  dimensions,  so  as  to 
leave  an  open  box  with  sides  of  thickness  1  inch.  The 
cavity  is  then  filled  up  with  wood.  The  densities  of  the 
iron  and  wood  are  as  10  and  1.  Find  the  C.G.  of 

the  body  formed. 

[We  shall  first  solve  the  question  in  the  more  direct,  but 
longer,  way  ;  and  then  show  how  it  may  be  done  by  using  the 
principle  above  explained.] 

Let   AB  he   the   straight    line    drawn 
from  the  middle  pcnnt  of  the  open 
face  of  the  wood  at  right  angles  to 

this  and  the  opposite  face. 
Let  H  be  the  C.G   of  the  entire  block 

of  iron ; 

L  that  of  the  iron  left ; 

A'  that  of  the  wood  and  of   the  iron 
removed. 

Aff=5",  AK=4V'. 
Volume  of  entire  block  of  iron  =  1000  cubic  inches. 

Volume  of  piece  removed -=8  .8.9==  576  cubic  inches, 
Volume  of  piece  left  =  424  cubic  inches. 
Volume  of  wood  =   576  cubic  inches. 

Dividing  by  8,  these  volumes  are  proportional  to  125,  72, 
53,  72. 

We  may  take  for  the  weights  ( '.•    the  iron  is  10  times  as 
heavy  as  the  wood)  1250,  720,  530,  72. 

To  find  L,  since  the  weights  720  at  K  and  530  at  L  have 
resultant  at  H, 

K 
H 
L 

B 
Fig.  95. 

'20, 

AL=^^. 

Let  X  inches  be  the  distance  of  the  required  C.G.,  6^,  from 
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A.      Then   by   moments  about   A,   since    the    resultant 

of  530  at  L  and  72  at  K  is  at  distance  x  inches  from  A, 

(530  +  72)^=530.511  +  72.41 
602^  =  3334. 

The  C.G.  is  on  AB  at  5^f  ins.  from  A. 

Alternative    Method. — The     weight     of     the     body     is     the 
resultant  of  the  weights  of  the  entire  block  of  iron  at 

H,  and  of  the  wood  at  K,  and  a  force  equal  to  the  weight 
of  the  iron  removed  acting  vertically  upwards  at  K. 

:.    by  moments  about  A, 

(10.1000  +  1.576-10.576)^ 

=  10 .  1000 .  5  +  576  .  41-  10  .  576  .  4^  ; 

(10.  125-9.  72)^  =  10.  125.  5-9.  72.  4i; 
602^^  =  3334  ; ^=5Mf. 

Exercises  VI.  a. 

1.  ABCD  is  a  square.-  Particles  of  weights  1,  2,  3,  4  are  placed 
a.t  A,  B,  G,  D.     Find  the  distances  of  their  C.G.  from  ̂ ^  and  AD. 

2.  ABCD  is  a  square,  O  the  intersection  of  diagonals.  E,F,G,H 
are  the  middle  points  of  0 J,  OiB,  0(7,  Oi).  OE=a.  Masses  1,  3,  5, 
7  are  placed  Sit  A,  B,  G,  D,  and  2,  4,  6,  8  at  E,  F,  G,  H.  Find  the 
C.G.  and  its  distances  from  AC  and  BD. 

3.  Equal  masses  are  placed  at  all  the  angles  but  one  of  a  regular 
hexagon.     Where  is  their  C.  G.  ? 

4.  AB,  BG  are  two  rods  of  the  same  cross-section,  of  materials 
whose  densities  are  as  5  and  7.  Their  lengths  are  4  and  6.  Find 
their  C.G. 

5.  Three  cylindrical  rods,  each  of  length  4  inches,  having  diameters 

1,  1:4,  ̂ 2^  inches,  and  densities  6,  7  "5,  6  are  joined  in  a  straight  line. 
Show  that  their  Centre  of  Gravity  is  W  inch  from  the  middle  point 
of  the  middle  rod. 

6.  Three  spheres  of  radii  6,  10,  and  4  inches  are  joined  together 
with  their  centres  in  a  straight  line.  That  of  radius  10  inches  is  in 
the  middle,  and  has  a  density  twice  as  great  as  each  of  the  others. 
Where  is  their  Centre  of  Gravity  ? 
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7.  ABC  is  ca  triangle  ;  D,  E,  F  the  middle  points  of  BC,  CA,  and 
A  B.  »Show  that  the  C.G.  of  BCEF  is  on  the  straight  line  DA  at  a 
distance  ̂ AD  from  D. 

8.  ABC  is  a  triangle,  A  straight  line  is  drawn  parallel  to  BC, 

cutting  off  -  of  each  of  the  sides  AB,  AC.  Find  the  Centre  of 

Gravity  of  the  trapezium  formed.  . 

9.  A  square,  of  side  a  and  weight  per  unit  area  w,  has  a  circular 

portion  of   diameter   -   removed,   the   circumference   of   the   circle 

touching  one  side  of  the  square  ;  and  this  is  replaced  by  a  piece,  of 

weight  per  unit  area  lo'.  Show  that  the  distance  of  the  C.G.  of  the 
body  formed  from  the  side  in  question  is 

a(32i«-  irw  ■{■irw') 

4:{\Qw  -  irw  -{-  irw')^ TT  being  the  ratio  of  the  circumference  of  a  circle  to  its  diameter. 

States  of  EcLUilibrium. — Suppose  a  body  to  be  in  equilibrium 
under  the  action  of  any  forces.  If  it  is  now  slightly  displaced 
from  its  position  of  equilibrium  the  forces  acting  on  it  will,  as 

a  rule,  be  slightly  altered ;  and  the  body  will,  in  general,  in  the 
new  position,  not  be  in  equilibrium,  although  in  certain  cases  it 

may  still  remain  in  equilibrium  after  the  displacement. 
One  of  three  things  will  happen  after  the  displacement. 

(1)  The  body  may  tend  to  return  to  its  old  position. 
(2)  The  body  may  tend  to  move  further  away  from  its  old 

position. 
(3)  The  body  may  remain  in  equilibrium  in  the  displaced 

position,  not  tending  to  move  either  one  way  or  the  other. 

These  cases  may  be  illustrated  by  a  simple  example. 
Suppose  a  lamina,  such  as  a  piece  of  cardboard,  to  be  carried  in 

a  vertical  position  by  means  of  a  peg  which  passes  through  a 
hole  in  it,  and  about  which  it  can  freely  rotate  in  its  own  plane. 
For  the  lamina  to  be  in  equilibrium  its  centre  of  gravity  and 
the  point  of  support  must  be  in  the  same  vertical  straight  line. 

If  the  body  is  suspended  so  that  its  C.G.  is  vertically  heloiv 

the  point  of  support,  after  a  slight  displacement  it  returns  to 
its  old  position. 

If  the  body  is  suspended  so  that  its  C.G.  is  vertically  above 

the  point  of  support,  after  a  slight  displacement  it  moves 
further  away  from  its  old  position. 
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If  the  body  is  suspended  so  that  its  C.G.  is  at  the  point  of 

support,  after  a  slight  displacement  it  remains  in  the  displaced 
position,  moving  neither  one  way  nor  the  other. 

The  equilibrium  of  the  body  is  said  in  these  three  cases, 

respectively,  to  be  stable,  unstable,  and  neutral. 
The  equilibrium  of  a  body  is  stable,  unstable,  or  neutral, 

dccording  as,  after  a  very  slight  displacement,  the  body  returns  to 

its  old  position,  moves  farther  away  from  it,  or  remains  in  the 

displaced  positiori. 

Instances. — A  body  resting  on  an  extended  base,  such  as  a 
chair  or  table,  or  a  book  lying  flat  on  a  table,  is,  in  general,  in 

stable  equilibrium. 

A  body  balanced  on  a  point  would  be  in  unstable  equilibrium. 
Such  a  condition  it  is  practically  impossible  to  realize  ;  if  it 
could  for  an  instant  be  attained  the  slightest  accidental  shake 

or  draught  of  wind  would  upset  the  equilibrium. 
If  a  book  is  placed  upright,  so  as  to  stand  on  its  edge,  the 

equilibrium  is  stable,  because  a  very  slight,  infinitesimal  dis- 

placement would  not  upset  it.  But  we  may  recognise  diff"erent 
degrees  of  stability ;  and  the  book  in  this  position  would  be  in 
less  stable  equilibrium  than  if  lying  flat  on  the  table. 

A  uniform  sphere  resting  on  a  horizontal  table  is  in  neutral 

equilibrium. 

It  may  happen  that  the  state  of  equilibrium  of  a  body  under 
given  circumstances  is  not  the  same  for  all  the  displacements 

which  it  is  possible  to  give  it. 
Thus,  if  an  egg  lies  on  a  table,  its  equilibrium  is  stable  for  a 

displacement  in  which  one  end  is  raised  ;  but  neutral  for  a 
displacement  in  which  it  is  rolled  along,  the  ends  each  remaining 

at  the  same  height  throughout  the  rolling. 
A  square  lamina  balanced  on  one  edge  on  a  horizontal  surface 

is  (theoretically)  in  stable  equilibrium  for  one  sort  of  displace- 
ment, and  in  unstable  equilibrium  for  another. 

Criterion  for  State  of  Equilibrium. — A  very  important  case 
of  equilibrium  is  that  of  a  body  under  the  action  only  of  its 

own  weight  and  the  reactions  of  fixed  supports,  such  as  fixed 
smooth  surfaces  in  contact  with  which  it  rests.  In  this  case 

there  is  an  easy  criterion  for  the  state  of  the  equilibrium  for 

any  displacement,  as  we  shall  now  show. 
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The  C.G.  of  a  body  always  tends  to  fall  lower  and  lower. 

If  the  C.G.  is  raised  by  the  displacement,  after  the  displace- 
ment the  C.G.  falls,  and  the  body  returns  to  its  old  position. 

If  the  C.G.  is  lowered  by  the  displacement,  after  the  displace- 
ment it  will  not  rise  again,  but  continue  to  fall  farther  away 

from  its  old  position. 

If  the  C.G.  is  unaltered  in  level  by  the  displacement,  after  the 
displacement  it  will  tend  to  move  neither  way. 

Hence  the  equilibrium  of  the  body  is  stable,  unstable,  or 
neutral,  according  as  the  displacement  raises  its  C.G.  or  lowers 
it,  or  does  not  alter  its  level. 

If  a  body  is  capable  of  being  moved  in  several  different  ways 
it  often  happens  that  it  can  receive  a  displacement  for  which 
the  equilibrium  is  partly  of  one  sort  and  partly  of  another. 
Take,  for  example,  the  case  of  a  book  lying  on  a  table.  It  may 
receive  a  slight  displacement  consisting  partly  of  sliding  it 
along  the  table  and  partly  of  raising  one  end  of  it.  If  it  is 
then  released  it  will  fall  back  on  the  table,  but  not  into  its 

original  position. 

But  it  should  be  noticed  that  this  case  differs  fi-om  that  of 
a  cylinder  lying  flat  on  a  smooth  horizontal  table  in  an 
important  respect. 

The  cylinder  can  be  displaced  by  the  application  of  a  very 
small  force  acting  horizontally  and  at  right  angles  to  its  axis, 
in  fact,  theoretically  hy  any  force,  hotvever  small. 

To  displace  the  book  on  the  table  a  force  large  enough  to 
overcome  the  friction  is  required,  and  a  smaller  force  would  not 

produce  displacement. 
The  book  resting  on  the  table  is  said,  as  a  rule,  to  be  in 

stable  equilibrium,  and  the  cylinder  to  be  in  neutral  equilibrium. 

Example. — ABC  is  a  triangle  cut  from  a  board  of  uniform 
thickness  and  density.  The  angle  B  is  acute.  If  AC=h, 

CB^a,  find  the  greatest  value  that  AB  can  have,  in 
order  that  the  triangle  may  be  able  to  stand  on  CB 
on  a  horizontal  surface. 

Join  C  to  F,  the  middle  point  of  AB. 

Then  the  C.G.  of  the  triangle  is  in  CF.  And  for  the 
triangle  to  be  just  on  the  point  of  falling  over  BCF  must 
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be  a  right  angle,  and  this  gives   the   greatest  length 

fi^  for  AB. 
Draw  AJV  perpendicular  to  BC 

F  produced. 
Then         NC^CB=a. 

BA''  =  BN^  +  NA^ 

=^{2af +  1)^-0? 

The  greatest  value  that  BA  can  have  is  sJzd^+h^. 

Example. — Four  bricks  are  placed  evenly,  one  on  top  of 
the  other  on  a  horizontal  surface,  each  brick  projecting 

in  the  direction  of  its  length  by  the  same  amount  beyond 
the  one  below  it.  If  the  length  of  each  brick  is  I,  find 

the  greatest  length  by  which  each  brick  can  project 

beyond  the  one  below  it. 

The  arrangement  must  be  such  that  the  C.G.  of  any  number 
_  of  the  bricks,  counting  from  the  top  down,  must  not  lie 

beyond  the  edge  of  the  brick 
immediately  below  them. 

Now  if   this   is   true   for   three 

bricks   it  is    clearly  true    for 
two  and  for  one,   because,  as 
more  bricks  are  added  on,  the 

C.G.    is   more    and    more   dis- 

placed. Let  X  be  the  amount  by  which 

each    brick    overlaps    the    one 

below   it,  when   the   three   top   bricks  are  just  on   the 

point  of  falling  over. 

Then  the  C.G.  of  these  three  is  displaced  by  -  from  the 

vertical   line   through   the   middle  point  of  the  lowest. 

Thus  we  have,  putting  1  for  the  weight  of  each  brick, 

Fig.  97. 

\,x-^-\.  2j^+1  .3.r, 

I 

3^  =  12^, 
I 

Thus  the  required  length  is 
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Example.— A  rectangular  block  of  wood  9x9x12  ins. 
stands  on  one  of  its  small  faces  on  a  horizontal  plane. 

Its  weight  is  25  lbs.  What  is  the  smallest  thrust  at  the 
middle  point  of  one  of  its  top  edges  that  will  upset  it, 

supposing  that  it  will  turn  without  sliding  about  a 
lower  edge  ? 

Let  ABCD  represent  a  section  of  the  block,  so  that  G  is 
its  C.G.,  A  the  middle  point  of  the  edge  about  which  it 

turns,  and  C  the  point  to  which  the  force  is  applied. 

The  moment  about  A  of  the  up- 
setting force  has  to  overcome 

the  moment  about  A  of  the 

weight.  This  moment  is  great- 
est at  first,  when  the  face  AB 

is  horizontal.  Thus  we  must 

find  the  upsetting  force  neces- 
sary to  counterbalance  the 

weight  in  the  initial  position. 
Now  in  order  that  the  upsetting 

force  may  be  as  small  as  possible 
it  must  act  so  as  to  produce  the 

greatest  possible  moment  about  A.  Hence  it  must  be  at 

right  angles  to  AC.  If  the  required  force  at  starting  is 

ii^  pounds'  weight,  by  moments  about  A, 
F.AC=25.^AB. 

F.  15  =25.  |. 
F=7h 

Hence   smallest   thrust    necessary    is    just    over   7^  Ibs.' 
weiglit. 

Fig.  98. 
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Exercises  VI.  b. 

1.  A  table  with  a  square  top,  2  feet  each  way,  has  four  legs  each 
28^  inches  long,  and  set  at  2^  inches  from  the  edges.  The  entire 
table  weighs  20  lbs.  Find  the  least  vertical  and  horizontal  forces 
at  an  edge  necessary  to  upset  it. 

2.  AG,  BG  are  two  light  rods,  of  lengths  h  and  a,  hinged  at  C, 
and  connected  by  a  string  AB.  Weights  W  and  2W  are  fastened  to 
A  and  B.  For  the  arrangement  to  rest  on  BG,  show  that  the  least 

length  for  the  string  is  sl2a^  +  h\ 

3.  A  cylinder,  the  diameter  of  whose  base  is  5  inches,  and  height 
8  inches,  stands  on  a  horizontal  surface.  How  high  can  one  side  of 
the  base  be  raised  without  causing  the  cylinder  to  fall  over  ? 

4.  If  n  bricks  are  piled  one  on  top  of  the  other,  with  their  lengths 
horizontal,  each  projecting  bv  the  same  amount  in  the  direction  of 
the  lengths  beyond  the  one  below  it,  show  that  the  greatest  value 

that  this  projection  can  have  is  -  of  the  length  of  each  brick. n 

5.  A  circular  table  stands  on  three  symmetrically-placed  legs, 
their  lower  ends  being  all  just  vertically  beneath  the  edge  of  the 
table.  Show  that  a  body  of  less  weight  than  that  of  the  table  may 
be  placed  anywhere  on  it  without  upsetting  it,  but  that  a  body  of 
greater  weight  can  be  placed  so  as  to  upset  it. 

6.  A  lead  pencil  .<4  5,  6  inches  long,  with  a  weight  of  6  oz.  hanging 

from  a  point  :f-inch  from  the  end  A,  is  kept  in  a  horizontal  position 
by  a  thumb  and  forefinger.  The  forefinger  is  above  tlie  pencil  at  a 

point  :4-inch  from  the  end  B,  and  the  thumb  under  the  pencil  at  a 
point  1  inch  from  the  end  B.  Neglecting  the  weight  of  the  pencil, 
find  the  pressures  on  the  thumb  and  forefinger.    (Coll.  Precep. ,  1898. ) 

7.  A  imiform  beam  AB,  of  length  12  feet  and  weight  10  lbs.,  is 
suspended  horizontally  by  two  vertical  cords  attached  to  the  ends, 
and  a  weight  of  20  lbs.  is  placed  on  the  beam.  Find  the  position  of 
this  weight  that  the  tension  of  one  of  the  cords  may  be  exactly 
double  that  of  the  other.     (Coll.  Precep.,  1897.) 

8.  Three  solid  cubes  of  granite,  whose  edges  are  3  feet,  2  feet,  and 
1  foot  long  respectively,  are  piled  on  a  horizontal  platform.  The 
largest  is  at  the  bottom  of  the  pile,  the  smallest  at  the  top,  and  each 
face  of  each  cube  is  either  horizontal  or  vertical.  At  what  height 
above  the  platform  is  their  Centre  of  Gravity  ?    (Coll.  Precep.,  1898.) 

9.  Mention  the  chief  properties  of  the  Centre  of  Gravity  of  a  body. 

An  isosceles  right-angled  triangle  is  constructed  on  the  upper 
side  of  a  square  as  hypothenuse.     Find  the  Centre  of  Gravity  of  the 
whole  figure. 
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10.  Find,  geometrically,  the  Centre  of  Gravity  of  a  heavy  bar  10 
feet  long,  bent  so  as  to  form  an  angle  4  feet  from  one  end.  (Coll. 
Precep.,  1898.) 

11.  A  lever  is  to  be  cut  from  a  bar  weighing  3  lbs.  per  foot.  What 
must  be  its  length  that  it  may  balance  about  a  point  2  feet  from  one 
end  when  weighted  at  this  end  with  50  lbs.  ?     (Coll.  Precep.,  1898.) 

12.  Masses  of  1,  2,  5,  and  10  grams  are  placed  in  this  order  round 
the  corners  of  a  rectangle  whose  sides  are  12  cm.  and  3  cm.  long, 
the  1  and  2  grams  being  at  the  ends  of  a  side  12  cm.  long.  Deter- 

mine the  position  of  the  Centre  of  Mass  of  the  system.  (London 
Matric,  1898.) 

13.  The  Centre  of  Gravity  of  a  rod  4  feet  long,  weighing  6  lbs,,  is 
1  foot  from  one  end  of  the  rod.  At  the  other  end  a  weight  of  4  lbs. 
is  placed  ;  find  where  the  rod  must  be  supported  so  that  it  rests  in  a 
horizontal  position.     (Oxford  Locals,  1897.) 

14.  Define  the  Centre  of  Gravity  of  a  body.  Masses  of  1,  2,  3  lbs. 
respectively  are  placed  at  the  vertices  of  a  triangle  ABC ;  find  their 
Centre  of  Gravity.     (Oxford  Locals,  1898.) 

15.  A  uniform  rod  AB,  2  feet  long,  weighing  12  lbs.,  can  turn 
freely  in  a  vertical  plane  about  an  axis  at  A.  Calculate  the  force 
which  must  be  applied  at  B,  at  right  angles  to  AB,  to  keep  the  rod 

in  equilibrium  at  an  angle  of  45"  to  the  vertical.  (Oxford  Locals, 1898.) 

16.  A  uniform  board  1  foot  square  has  a  weight  of  1  lb.  fastened 
to  each  of  two  adjacent  corners,  and  a  weight  of  2  lbs.  to  each  of  the 
other  two.  Find  its  Centre  of  Gravity.  (Camb.  Jr.  Loc,  Stat. 
Dyn.  and  Hydro.,  1896.) 

17.  If  from  a  uniform  circular  sheet  of  lead,  1  foot  in  radius,  a 
round  hole  1  inch  in  radius  be  punched  out,  find  the  Centre  of 
Gravity  of  the  remaining  portion  when  the  centres  of  the  disc  and 
the  hole  are  7  inches  apart.     (Camb.  Jr.  Loc,  Mech.,  1897.) 

18.  A  uniform  ladder  30  feet  long,  weighing  20  stone,  rests  with 
one  end  on  the  ground  and  the  other  end  against  a  smooth  vertical 

wall,  with  which  it  makes  an  angle  of  30°.  A  man  weighing  10  stone 
climbs  24  feet  up  the  ladder.  Calculate  the  horizontal  and  vertical 
components  of  the  force  exerted  by  the  ground  on  the  foot  of  the 
ladder.     (Camb.  Jr.  Loc,  Mech.,  1898.) 

19.  Particles  whose  masses  are  2,  i^,  2,  3  are  placed  in  order  at  the 
angular  points  of  a  square  ;  show  in  a  diagram  the  position  of  their 
Centre  of  Gravity,  and  find  its  distance  from  the  particle  whose  mass 
is  5.     (Science  and  Art,  1897.) 

20.  Two  smooth  cylinders  are  held  firmly  with  their  axes  hori- 
zontal and  parallel,  and  with  their  centres  5  inches  apart ;  the  radius 

of  each  is  an  inch  long  ;  a  third  cylinder,  weight  100  lbs.,  and  radius 
5  inches,  rests  on  the  two  fixed  cylinders,  with  its  axis  parallel  to 
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their  axes ;  find  the  pressure  it  exerts  on  each  of  the  small  cylinders. 
(Science  and  Art,  1897.) 

21.  Two  uniform  bars  AB,  BC,  of  lengths  2  feet  and  1  foot,  are 
rigidly  connected  at  B  so  as  to  form  an  angle  ;  find  the  distance  of 
their  common  Centre  of  Gravity  from  the  middle  point  of  AB. 
(Science  and  Art,  1899.) 

Summary. 

If  the  masses  of  any  particles  in  a  plane  are  known,  and  their 
distances  from  two  straight  lines  in  different  directions,  their  C.G. 
can  be  found  by  taking  moments  about  these  straight  lines. 

If  the  mass  and  C.G,  of  a  body  are  known,  and  the  mass  and  C.G. 
of  a  piece  removed  are  known,  the  C.G.  of  the  remainder  may  be 
found  by  noticing  that  the  piece  removed  and  the  piece  left  would 
balance  about  the  C.G.  of  the  whole. 

States  of  Equilibrium. — A  body  is  said  to  be  in  stable,  unstable,  or 
neutral  equilibrium,  according  as  when  it  is  very  slightly  displaced 
from  its  position  of  equilibrium  it  tends  to  return,  to  go  further 
away,  or  to  do  neither. 

A  heavy  body  Is  in  stable,  unstable,  or  neutral  equilibrium  for  a 
given  kind  of  displacement,  according  as  the  displacement  raises  or 
lowers  its  C.G.  or  does  neither. 



CHAPTER  YII. 

STATES   OF   MATTER.      ELASTICITIES. 

DiflFerent  states  of  Matter. — There  are  three  different 
physical  states  in  which  matter  may  exist  :  the  solid,  liquid,  and 
gaseous  states. 
A  solid  body  is  one  which,  in  general,  offers  considerable 

resistance  to  the  application  of  forces  tending  to  change  its 

shape.  Thus,  if  forces  act  on  a  rod  which  tend  to  bend  it,  the 
rod  will  yield  to  a  certain  extent  and  no  further,  unless  the 

forces  are  great  enough  to  break  it. 

A  liquid,  in  general,  yields  more  readily  to  forces  tending  to 
change  its  shape.  Thus,  water  yields  with  great  readiness, 
treacle  less  readily,  and  pitch  less  readily  still.  The  last  two 

liquids  are  said  to  be  viscous. 
It  is  difficult  to  draw  the  line  between  solids  and  liquids. 

There  are  some  soft  solids  which  readily  change  their  shapes,  and, 
on  the  other  hand,  there  are  viscous  liquids  which  only  change 

their  shapes  with  great  reluctance.     But  the  distinction  is  this. 
A  solid  will  not  continue  to  change  its  shape  indefinitely 

under  the  continued  application  of  any  force,  however  small, 
but  a  liquid  will  do  so. 

A  gas,  such  as  air,  is  a  body  which  readily  undergoes  changes 

of  volume  by  varying  the  pressure  to  which  it  is  subjected. 
Thus,  by  increasing  the  pressure  acting  on  a  quantity  of  air,  it 
readily  diminishes  in  volume.  Water,  or  any  other  liquid,  can 

also  be  compressed  by  subjecting  it  to  increased  pressure,  but 
the  diminution  in  volume,  in  this  case,  is  very  small. 

The  distinction  between  a  liquid  and  a  gas  is  this — 
By  diminishing  the  pressure  on  a  liquid  its  volume  will  only 

increase  to  a  certain  limit.      By  continually  diminishing  the 
E.S.  H 
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pressure  on  a  gas,  its  volume  will  continually  increase,  and 

occupy  any  assigned  space,  however  large. 
In  general,  in  questions  on  the  Mechanics  of  Solids,  we  have 

not  to  consider  deformations  produced  in  bodies  by  the  forces 

acting  on  them,  but  to  regard  the  bodies  as  quite  undeformable. 
But  in  certain  cases  we  have  to  consider  deformations. 

Elasticity. — If  a  body  is  subject  to  the  action  of  forces  tend- 
ing to  deform  it  in  any  way,  the  property  by  which  it  resists 

deformation  is  called  Elasticity. 

A  solid  body  possesses  various  elasticities,  according  to  the 
various  sorts  of  deformation  which  it  may  be  forced  to  undergo. 

Thus,  a  rod  may  be  held  at  one  end  and  stretched,  that  is,  it 

may  undergo  a  longitudinal  deformation. 
It  may  be  subjected  to  equal  pressure  on  all  sides,  so  that  it  is 

made  to  undergo  a  diminution  in  bulk. 
It  may  be  held  at  one  end  while  the  other  end  is  twisted,  so 

that  it  is  made  to  undergo  a  torsional  deformation. 

Corresponding  to  these  three  sorts  of  deformation,  the  rod  has 

longitudinal,  volume,  and  torsional  elasticities. 

Young's  Modulus. — The  longitudinal  elasticity  is  also  called, 
more  commonly,  the  Young^s  inodulus  for  the  material.  We  will 
consider  more  in  detail  the  exact  meaning  of  this  quantity,  and 

the  way  to  measure  it. 

Suppose  a  straight  rod  of  uniform  cross-sectional  area,  such  as 
a  long  cylinder,  to  be  firndy  fixed  at  one  end  and  stretched  by 

a  force  applied  at  the  other  end.  By  the  cross-sectional  area 
is  meant  the  area  of  the  section,  or  of  either  of  the  twd  faces 

that  would  be  exposed  by  making  a  cut  across  the  rod  at  right 

angles  to  its  length. 
Now,  it  is  clear  that  if  a  force  of  a  certain  magnitude  stretches 

the  rod  by  a  certain  amount,  twice  as  much  force  would  be 

required  for  a  rod  made  of  the  same  material  and  of  the  same 

length,  but  of  twice  the  cross-sectional  area  of  the  given  one. 
Three  times  the  force  is  required  to  produce  the  same  stretching 

in  a  rod  of  three  times  the  cross- sectional  area,  and  so  on.  And 
in  general  the  tendency  of  a  force  to  produce  stretching,  and  the 
amount  of  stretching  produced  in  a  given  length  of  rod,  will 

depend,  not  only  on  the  force,  but  on  the  amount  of  force  acting 
across  each  unit  area  of  cross-section. 
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The  force  acting  per  unit  area  of  cross-section  of  the  rod,  or 
the  fraction  Foi'ce 

Area  of  cross-section 
IS  called  the  stress  in  the  rod. 

If  a  rod  of  a  given  length  is  stretched  by  a  certain  amount, 

the  amount  of  stretching  produced  in  each  unit  of  its  length 
depends,  not  only  on  the  whole  stretching,  but  on  the  original 
length. 

The  stretching  per  unit  of  length,  or  the  fraction 
Stretching 

Original  length 
is  called  the  strain  in  the  rod. 

Stresses  and  sti'ains  in  materials  may  be  of  various  soi'ts,  and 
in  any  case  the  fraction  stress -^strain  is  called  the  elasticity  of 
the  material  for  the  particular  sort  of  deformation  produced. 

Thus  we  have,  in  general, 
T^,     ....       Stress 

In  the  particular  case  of  stiess  and  strain  considered,  the 

elasticity  in  question  is  the  longitudinal  elasticity,  or  the 

Young's  modulus. 
Limit  of  Elasticity. — Experiment  shows  that  for  a  given 

material  the  stress  and  the  sti-ain  are  always  proportional  to 
each  other,  provided  these  are  both  of  moderate  amount.  Thus, 
if  a  rubber  band  is  stretched,  the  elongation  is  proportional  to 

the  stretching  force  ;  and  if  rubber  bands  of  various  sizes,  but 
all  made  of  the  same  material,  are  used,  it  will  be  found  that 

the  elongation  per  unit  of  original  length  is  always  proportional 

to  the  force  per  unit  area  of  cross-section. 
It  is  only  when  the  force  applied  is  so  great  as  to  produce  a 

permanent  deformation,  so  that  the  body  does  not  return  to  its 
original  dimensions  when  the  force  is  removed,  that  the  stress 

and  strain  are  no  longer  proportional. 

Thus,  as  long  as  we  keep  to  moderate  forces,  not  producing 
permanent  deformation,  the  definition  given  for  elasticity  leads 
to  a  constant  value  for  this  quantity. 

Suppose  we  have  a  rod  of  length  I  and  cross-sectional  area  s, 
and  suppose  that  a  stretching  force  p  stretches  the  rod  by  a 

lensrth  I'. 
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In  this  case,  stress  =  -  ; 

Let  the  longitudinal  elasticity,  or  Young's  modulus,  be  m. 

P     ̂'    P^ Then  '»=?-7=y 

Compression. — If,  instead  of  a  stretching  force  p,  a  thrust  p 
acts  at  the  end  of  the  rod  so  as  to  compress  it  in  the  direction  of 

its  length  and  make  it  shorter,  then,  as  long  as  no  bending  or 

buckling  is  caused,  the  rod  will  be  shortened  by  the  amount  ?', 
that  is,  by  an  amount  equal  to  the  lengthening  caused  by  a  pull  p. 

In  other  words,  if  the  stress  is  reversed  but  kept  of  the  same 
magnitude,  the  strain  will  be  reversed,  but  will  be  of  the  same 

magnitude. 

In  the  equation  m=^, 

since  j,  is  simply  a  ratio,  m  is  a  quantity  of  the  same  sort  as  - ; t  s 

that  is,  it  is  to  be  expressed  in  units  of  force  per  unit  of  area  ; 

for  example,  in  pounds'  weight  per  square  inch. 
p,  s,  and  m  must  all  be  expressed  in  consistent  units.     Thus, 

if  m  is  in  pounds'  weight  per  square  inch,  p  must  be  in  pounds' 

weight  and  s  in  square  inches.     But  I  and  l'  may  be  expressed 
in  terms  of  any  unit  of  length,  provided  the  same  unit  is  used 
for  both,  for  it  is  merely  the  ratio  of  these  two  quantities  that 
we  have  to  deal  with,  and  this  will  be  the  same  if  they  are 

expressed  in  inches,  feet,  centimetres,  or  anything  else. 

Experiment  21, — (1)  Take  a  uniform  rubber  band  and  suspend  it 
by  one  end.  Hang  various  weights  on  the  other  end,  such  as  10,  20, 
30,  40,  50  grams.  Measure  the  elongations  produced.  These  should 
be  proportional  to  the  weights  used. 

(2)  Shorten  the  band  up  so  as  to  use  only  half  its  length.  It  may 
be  cut  in  two  or  suspended  by  its  middle.  Find  the  elongations 
produced  by  the  same  weights.  These  should  be  half  as  great  as  in 
the  first  case. 

(.3)  Attach  tlie  two  halves  side  by  side,  tying  the  ends  together. 
Find  the  elongations  produced  by  the  same  weights.  These  should 
be  half  as  great  as  in  the  second  case. 
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Experiment  22. — Find  the  elongation  produced  by  a  certain 
weight  in  a  rubber  band,  say  50  grams.  Measure  the  unstretched 
length  of  the  band  ;  and  by  carefully  measuring  its  breadth  and 
thickness  in  its  natural  condition,  determine  its  cross-sectional  area. 

Thus  find  the  Young's  modulus  of  the  band. 

ExxVMPLE. — What  is  the  diameter  of  a  steel  wire  when  a 

weight  of  1  cwt.  stretches  100  yards  of  it  ̂   of  an  inch  ? 

(Young's  modulus  for  steel  =  31,000,000  lbs.'  wt.  per  square inch.) 

Let  diameter  be  d  inches. 

Area  or  cross-section  =  -7ra^  =  -r-—  sq.  ms. 
4  14      ̂  

lld^ 

Stress  =  112-^— — -  lbs.'  wt.  per  sq.  in. 
112.14,,     ,     ̂  

=  ,^     lbs.'  wt.  per  sq.  m. 

Strain  =,^^300 
48  ■  14400' 

112    14         1 

••    ̂l'^^^'^^^  =  -TI^^14400- 

,,     112.14.14400     32.72.122 d^  =  — , 
31000000  310000 

7.12  .  /32 
100 

diameter  ='853  ins. 
c^=V7^\;^  =  -853 

Exercises  VII. 

1.  What  weight  will  stretch  a  copper  wire  10  feet  long  and 

j-inch  diameter  by  4^-inch  ? 

Mod.  =  18,000,000  lbs.'  wt.  per  sq.  inch.     ir=^-j-. 
2.  Find  Young's  modulus  for  a  material,  a  bar  of  which  1  yard 

long,  with  a  cross- sectional  area  of  4  square  inches,  is  compressed 

xV-iiich  by  a  force  of  100  lbs.'  wt. 
3.  A  uniform  bar  1  foot  long  is  subjected  to  a  tension  of  1  ton  per 

square  inch  of  its  sectional  area.  What  is  the  nature  of  the  resist- 
ance which  it  offers  to  elongation  ? 

If  the  elongation  be  y  y  of  an  inch,  find  the  modulus  of  elasticity 
(Science  and  Art,  1898.) 
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Bending.— Suppose  a  becani  or  rod  to  be  placed  horizontally, 
and. to  be  firmly  fixed  at  one  end  ;  then  let  it  be  loaded  with  a 

weight  at  the  other  end.  Jf  this  is  not  gieat  enough  to  break 

or  permanently  deform  the  beam,  it  will  ju'oduce  an  amount  of 
bending,  or  of  deviation  of  this  end  from  its  original  position, 

proportional  to  itself. 

K 

1\ 

Fig.  99 
one  end. 

w 
-Bending  of  rod  fixed  at 

w 
Fig.    100.— Bending  of   rod   sup- 

ported at  both  ends. 

If  the  beam  rests  on  supports  at  its  ends,  and  carries  a  load 

between  the  supports,  the  load  will  depress  the  point  to  which 
it  is  attached  by  an  amount  proportional  to  itself. 

In  each  of  these  cases  the  beam  bends  because  some  parts  of  it 

become  stretched  and  others  compressed.  In  the  first  case  the 

upper  layers  of  the  beam  are  stretched  and  the  lower  ones  com- 
pressed, and  in  the  second  case  the  reverse  takes  place.  Hence, 

in  any  case  of  bending  of  a  beam  the  same  elasticity  is  concerned 

as  in  simple  stretching  or  compression,  that  is,  the  Young's 
modulus. 

Experiment  23. — Take  a  long  flexible  lath,  about  3  feet  long, 
1  inch  broad,  and  :j-inch  thick  would  be  suitable  dimensions,  but 
these  may  be  considerably  varied.  Fix  one  end  firmly  in  a  vice,  or 
by  laying  about  6  inches  of  it  on  the  edge  of  a  table  and  placing  a 
heavy  weight  on  it,  so  that  the  lath  is  horizontal. 

Load  the  other  end  with  various  weights,  such  as  10,  20,  30,  etc. , 
grams.  These  may  be  carried  by  a  string  tied  to  the  end,  or  they 
may  be  carefully  placed  in  turn  so  that  their  centres  come  over  a 
mark  made  across  the  lath  near  its  end. 

Notice  the  depressions  of  the  end  tliat  are  produced  by  the 
weights.     These  should  be  proportional  to  the  weights. 

Experiment  24. — Support  tlie  lath  horizontally  with  its  two  ends 
resting  on  two  supports,  such  as  two  blocks  of  wood. 

Place  in  turn  various  weights  at  the  middle  of  the  lath,  and 
measure  the  depressions  of  the  middle  which  are  produced  by  the 
weights.     These  should  be  proportional  to  the  weights. 
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Hydrostatic  Pressure. — If  a  body  is  subjected  to  pressui-e  on 
all  sides  which  is  the  same  per  unit  of  area  of  its  surface  every- 

where, its  volume  will  be  diminished.  Such  a  state  of  pressure 

may  be  produced  by  placing  the  body  in  fluid  contained  in  a 
suitable  vessel,  and  forcibly  compressing  the  fluid.  The  number 
of  units  of  force  acting  on  each  unit  of  aiea  of  the  body  is  called 
the  hydrostatic  pressure.     Let  this  be  P. 

If  the  original  volume  of  the  body  is  T",  and  this  is  reduced  by 
an  amount  v,  the  diminution  of  volume  per  unit  of  original 
volume  is  y-^  V. 

In  this  case, 
V 

Stress  =  P  ;      Strain  =  ̂ . 

The  corresponding  elasticity,  or  the  volume  elasticity  of  the 
body  is 

P-=-  „,    or    — . 

This  elasticity  may  be  regarded  as  the  measure  of  the  resist- 
ance which  the  body  offers  to  compression. 

The  reciprocal  of  the  elasticity,  or  the  diminution  in  volume 

per  unit  of  original  volume,  divided  by  the  hydrostatic  pres- 

sure, is  called  the  compi-essihility  ;  and  this  may  be  regarded 
as  the  measure  of  the  readiness  of  the  body  to  yield  to 
compression. 

Twisting. — If  a  long  cylindrical  rod  or  wire  be  firmly  fixed 
at  one  end,  it  may  be  twisted  by  attaching  an  arm  like  ACB  to 
the  other  end  C,  so  that  AC=CB,  and 

applying  equal  forces  at  A  and  B,  so  that 
these  act  at  right  angles  to  AB,  and  in  a 

plane  at  right  angles  to  the  wire.  These 

forces  form  a  couple  of  moment  "P  .  AB 
in  a  plane  at  right  angles  to  the  wiie. 

The  amount  of  torsion  produced  in  the  r 

/e 

P 

B 

wire,  that  is,  the  angle  through  which  ''p 
the  end  C  is  twisted,  will  depend  on  the  fio.  loi.— Torsion  pro- 

twisting  couple  and  on  the  material  and  ̂^^upfe."' ''''"''  ̂ ^  ̂''''*'"^ dimensions  of  the  wire. 

If  the  wire  is  of  length  I  and  radius  r,  and  if  the  moment  of 
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the  twisting  couple  is  M,  it  is  found  that  the  torsion  in  the  wire 

is  proportional  to  M  and  I,  and  inversely  proportional  to  7'^. 
Thus  the  torsion  is 

cm 

where  (7  is  a  constant  depending  on  the  material  of  the  wire. 

Summary. 

There  are  three  different  states  in  which  matter  may  exist,  the 
solid,  liquid,  and  gaseous  states. 

A  solid  will  not  go  on  yielding  to  the  continuous  application  of 
very  small  forces  tending  to  change  its  shape  or  size. 

A  liquid  will  yield  indefinitely  to  the  application  of  forces,  how^- 
ever  small,  tending  to  change  its  shape  ;  but  its  vohmie  will  not 
increase  beyond  a  definite  amount,  however  small  the  pressure  to 
which  it  may  be  subjected. 

A  liquid  which  only  slowly  yields  to  the  application  of  force  is 
said  to  be  viscous. 

A  gas  will  occupy  any  volume  whatever,  however  great,  if  the 
pressure  to  which  it  is  subjected  be  continually  diminished. 

Elasticity  is  a  property  of  a  body,  in  virtue  of  which  it  resists  the 
application  of  forces  tending  to  deform  it. 

A  body  may  have  various  elasticities  according  to  the  various 
sorts  of  deformation  that  it  can  undergo. 

Stretching. — If  a  straight  rod  of  uniform  cross-section  is  stretched, 
then 

^he  strain  is  the  stretching  per  unit  length  ; 

The  stress  is  the  stretching  force  per  unit  of  area  of  cross-section. 
In  any  case  of  deformation, 

-,     ̂ .  .^       stress Elasticity^^^^:^. 

In  the  case  mentioned,  the  particular  elasticity  is  the  longitudinal 

elasticity,  or  Young's  modulus. 
If  a  rod  of  uniform  cross-section  be  compressed  in  the  direction  of 

its  length,  then,  so  long  as  there  is  no  buckling,  the  diminution  of 
length  is  the  same  as  the  increase  in  length  that  an  equal  stretching 
force  would  produce. 

Hence  questions  of  such  compression  may  be  treated  by  the 
application  of  the  same  elasticity,  Young's  modulus,  as  is  used  in 
questions  of  elongation. 

If  a  rod  or  beam  is  supported  horizontally,  either  by  being  firmly 
fixed  at  one  end,  or  by  resting  on  two  supports  at  the  ends,  and  be 
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bent  by  means  of  weights,  the  amount  of  bending  is  proportional  to 
the  bending  weight,  so  long  as  this  is  not  so  great  as  to  permanently 

deform  the  beam.  The  elasticity  concerned  in  this  case  is  Young's modulus. 

Compression  in  bulk.— If  a  body  is  subjected  to  hydrostatic  pres- 
sure which  diminishes  the  bulk,  the  corresponding  elasticity,  or 

,    ̂ .  .^  pressure  per  unit  area 
volume  elasticity =   — —   -• 

decrease  in  bulk  per  unit  of  original  bulk 

The  reciprocal  of  this  is  called  the  compressibility. 

Torsion. — If  a  uniform  cylindrical  rod  be  held  at  one  end,  and  the 
other  end  be  twisted,  the  amount  of  torsion  produced  depends  on 
the  material  and  on  the  dimensions  of  the  rod,  as  well  as  on  the 
moment  of  the  twisting  couple. 

It  is  proportional  to  the  moment  of  the  couple  and  the  length  of 
the  rod,  and  inversely  proportional  to  the  fourth  power  of  the 
radius  of  the  cross-section  of  the  rod. 



CHAPTER  VIII. 

WORK.     POWER.     ENERGY. 

Work. — Work  is  done  when  a  working  agent,  such  as  a  man, 
a  horse,  or  a  steam  engine,  overcomes  a  resistance  through  a 
distance. 

Thus,  if  a  man  raises  a  body,  thus  overcoming  the  resistance 

of  its  weight,  through  a  height,  he  does  work.  But  in  meiely 

sustaining  the  weight  of  the  body  and  keeping  it  still  from 

falling,  no  matter  for  how  long  he  holds  it  up,  the  man  does  no 
work.  Again,  if  a  horse  draws  a  carriage  along  a  road  he  does 
work. 

Suppose  that  several  men  push  a  heavy  railway  van  and 
move  it.  One  man  alone  could  not  overcome  the  resistance, 

and  so  by  pushing  alone  he  would  do  no  work,  for  he  would  not 
move  the  van.  All  the  men  together  do  work.  And  we  must 

suppose  that  each  man  does  a  portion  of  the  work  depending  on 
the  portion  of  the  entire  force  which  he  contributes. 

Thus,  we  may  say  that  an  agent  does  work  when  it  exerts  a 
force  through  a  distance. 

Measurement  of  Work. — Consider  next  how  the  work  done 

by  an  agent  is  to  be  measured. 

Take  the  case  of  a  horse  pulling  a  carriage  along  a  road 

against  a  definite  resistance  to  motion,  and,  consequently, 
exerting  a  force  equal  to  the  resistance  in  order  to  overcome  it. 

In  pulling  the  carriage  along  a  definite  distance  a  certain 
amount  of  work  is  done.  In  pulling  the  carriage  along  another 

equal  distance  an  equal  amount  of  work  is  done.  If  the 
distance  is  made  three  times  as  great  the  work  is  clearly  three 

times  as  great  as  at  first,  and  so  on. 



WORK.     POWER.     ENERGY.  123 

Again,  in  pulling  two  exactly  siimilar  carriages,  so  that  twice 
as  much  force  is  necessary,  through  the  given  distance  the  work 
is  twice  as  great  as  for  one,  and  so  on. 

Hence  tlie  work  done  is  pioportional  to  the  distance  and 

proportional  to  the  force. 
Thus  it  is  proportional  to  the  product, 

force  X  distance ; 

and  it  will  be  consistent  to  define  it  as  equal  to  this  product. 
A  force,  or  the  agent  which  exerts  the  force,  may  do  work 

when  the  point  of  application  of  the  force  is  displaced,  but  not 
in  the  direction  in  which  tlie  force  acts. 

In  the  case  of  the  men  pushing  the  van,  one  man  may  push 

obliquely,  but  he  still  helps  to  move- it  on  in  the  direction  in 
which  it  actually  moves,  and  so  he  does  some  work.  If  he 

pushes  in  a  direction  straight  across  that  of  the  motion,  or  at 
right  angles  to  the  lines,  he  neither  helps  nor  hinders  the 
motion,  and  hence  he  does  no  work. 

Resolve  the  force  exerted  by  the  man  into  two  components, 

one  in  the  direction  of  the  motion,  the  other  at  right  angles  to 
it.  The  second  of  these  does  no  work.  The  work  done  by  the 

man  is  the  product  of  the  resolved  part  of  the  force  in  the 
direction  of  the  motion  and  the  distance  by  which  the  van  is 

displaced. 
In  general,  suppose  a  force 

F  to  act  in  the  direction  AC; 

and  let  its  point  of  application 
undergo  displacement  from  A 
to  B. 
T^  -rtiir   TtT     .     •    t  ^  FiG.  102. — Woik  done  by  force  which 
Draw  BM,  BL  at  right  angles    is  inclined  to  displacement. 

to  AC,  AB. 

Then,  if  F  is  resolved  along  and  at  right  angles  to  AB,  its 

component  along  AB  is,  by  the  triangle  ABL, 

AB  AM 

^     AL    ̂   '  AB' 

.-.    the  work  done  by  F  =  F  .  4^.  AB=F  .  AM. 

-^  AB 

Again,  we  may  suppose  the  displacement  AB  to  be  made  up 
of,  or  compounded  of,  two  displacements  AJI,  MB ;  and  since 
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the  work  done  by  F  is  F .  AM,  we  may  say  that  it  is  the 

product  of  the  force  and  the  resolved  part  of  the  displacement 
in  the  direction  of  the  force. 

Negative  Work. — It  is  sometimes  necessary  to  consider  work 
done  as  negative. 

Suppose  that,  in  the  case  of  the  men  pushing  the  van,  one 
man  pushes  so  as  to  hinder  the  motion,  that  is,  either  directly 

obliquely  or  backwards.  On  account  of  this,  when  we  consider 
the  whole  effect  produced,  something  must  be  deducted.  The 

work  done  by  this  man  is  a  negative  quantity. 
The  resolved  part  of  the  force  which  he  exerts  in  the 

direction  of  the  motion  is  a   negative  force  ;    and  the   work 
he  does,  measured  as  before,  by 

Bp^  the  product  of  this  component 
of  force  and  the  displacement,  is 

negative. 
In  the  figure,  suppose  that  A  B, 

the    direction    of    the    displace- 
ment,    makes    an    obtuse    angle 

Jot  ̂^''~'^'^^^'''  ̂ "^^-^  ̂ '^"^  ̂ ^'  with   AC,  the   direction   of  the force. 

The  resolved  part  of  F  in  the  direction  oi  AB  must  be 

counted  as   -  F  .  ̂-—^. AB 

Or,  the  resolved  part  of  the  displacement  AB  in  the  direction 
of  F  is  -  A3L 

From  either  of  these  we  see  that  the  work  done  hyTis.-T.AM. 
If  AB  is  at  right  angles  to  F,  AM=0,  and  the  work  is  0. 
We  may  notice  that  the  work  is  positive,  zero,  or  negative, 

according  as  the  angle  between  the  force  and  the  displacement 

is  an  acute  angle,  a  right  angle,  or  an  obtuse  angle. 

General  Definition. — We  may  now  give  the  following  general 
definition. 

If  the  point  of  application  of  a  constant  force  undergoes  a  rec- 
tilinear displacement  the  work  done  by  the  force  is  : 

(a)  The  product  of  the  displacement  and  the  resolved  part  of  the 
force  in  the  direction  of  the  displacement ;  or 

(b)  The  product  of  the  force  and  the  resolved  part  of  the  displace- 
ment  in  the  direction  of  the  force. 
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The  distance  AM,  in  the  above  figures,  or  the  resolved  part  of 

the  displacement  in  the  direction  of  the  force,  is  sometimes  called 
the  distance  through  which  the  force  acts.  And  the  work  done 

by  the  force  is  then  called  the  product  of  the  force  and  the  dis- 
tance through  which  it  acts. 

Unit  of  Work. — The  unit  of  work  is,  in  general,  the  work  done 
when  unit  of  force  acts  through  unit  distance. 

Thus,  if  we  use  the  Ib.'s  weight  and  the  foot  as  units  of  force  and 

length,  we  get  as  unit  of  work  the  work  done  by  a  Ib.'s  weight 
acting  through  a  foot.  This  is  a  very  important  unit  of  work 

in  practical  questions.  It  is  called  the  foot-pound,  and  it  is  the 

British  engineers'  unit  of  work. 
Other  units  of  work  are  derived  from  other  methods  of  measur- 

ing force  and  length.  The  work  done  when  a  kilogram's  weight 
acts  through  a  metre  is  called  the  kilogram-metre. 

If  ]*Q  is  any  line,  straight  or  curved,  joining  the  two  points 
P,  Q,  and  PM,  QJV  are  perpendiculars 
on  a  straight   line  XT,  then  MJV  is 

called  the  projection  of  PQ  on  XT. 
In  the  case  we  have  considered  we 

may  say  that  the  work  done  by  the 
force  F  as  its  point  of  application  is 
moved  from  A  to  B  is  the  product  of 

F  and  the  projection  of  A  on  the  con- 
stant direction  of  F,  or  any  fixed 

straight  line  to  which  F  is  always  parallel. 
If  a  force  F,  constant  in  direction  and  magnitude,  acts  while 

its  point  of  application  moves  from  ̂   to  ̂   along  any  path 

joining  A  to  B,  the  work  done  is  the  pro- 
duct of  F  and  the  projection  of  AB  on 

the  direction  of  F. 

For  AB  may  be  supposed  to  be  divided 

in  indefinitely  small  elements,  all  of  which 
are  straight.  And  the  work  is  the  product 

of  F  and  the  algebraical  sum  of  the  pro- 
jections of  these  elements,  that  is,  the  product  of  F  and  the 

projection  of  AB. 
Power,  in  Mechanics,  means  rate  of  doing  work. 
The   word  is  sometimes  used   in   other  senses,  especially  to 

X        M N       Y 
Fig    104. 

line. 
—Projection  of  : 

Fig.  105. 
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denote  the  force  applied  to  a  machine,  or  mechanical  appliance,  in 
order  to  do  work  by  means  of  the  machine.  But  such  a  use  of  the 

word  should  be  avoided,  its  true  meaning  being,  as  stated,  rate 
of  doing  work. 

It  is  usual  to  speak  of  the  power  of  the  agent,  man,  horse, 

steam-engine,  or  otherwise,  which  is  perfoi'ming  the  work,  or  the 
power  at  which  the  agent  is,  in  the  given  case,  working. 

Thus,  if  an  agent  is  exerting  a  force  of  12  lbs.'  weight  through 
8  feet  in  every  second,  we  may  say  that  the  power  of  the 

agent  or  the  power  at  which  it  is  working  is  96  foot-pounds  per 
second. 

The  rate  of  working  at  1  foot-pound  per  second  is  an  incon- 
veniently small  rate  or  power  with  which  to  compare  other  powers. 

For  if  we  were  to  express  the  powers  of  large  steam  engines  in 

foot-pounds  per  second,  the  numbers  we  should  have  to  use  to 
specify  the  powers  would  be  very  large  ones  indeed.  For  this 

reason  a  practical  unit  of  power  is  employed  called  the  horse- 

power, which  may  be  defined  as  the  rate  of  working  at  33,000 

foot-pounds  per  minute  or  550  foot-pounds  per  second. 
The  horse-power  was  determined  by  Watt.  It  was  intended, 

as  its  name  implies,  to  denote  the  rate  at  which  a  horse  can  work ; 

but  it  is  an  overestimate  of  the  power  of  an  average  horse  work- 
ing in  ordinary  circumstances. 

Suppose  a  man  is  raising  a  body  weighing  25  lbs.  through  2 

feet  in  each  second.  He  works  at  the  rate  of  50  foot-pounds  per 

second,  that  is  at  the  rate  of  /.f{j  or  ̂ ^  of  a  horse-power. 
The  letters  H.P.  are  used  as  an  abbreviation  of  the  phrase  horse- 

power. They  are  often  used,  in  a  rather  different  sense,  to  mean 

"  the  number  of  horse-power  in  a  given  rate  of  working." 
Thus  we  may  say,  an  engine  works  at  2  H.P. ;  or  the  H.P.  of 

an  engine  is  2. 

Both  of  these  mean  the  same  thing. 

Cheval-Vapeur. — The  French  practical  unit  of  power  corre- 
sponding to  the  English  horse-power  is  the  cheval-vapeur.  This 

is  the  rate  of  working  at  75  kilogram-metres  per  second. 
Tlie  cheval-vapeur  is  a  little  smaller  than  the  horse-power, 

being  about  542  foot-pounds  per  second. 

Energy. — The  word  energy  is  equivalent  to  work.  It  is  gene- 
rally used  as  applying  to  the  work  which  can  be  got  out  of  an 
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agent,  or  which  an  agent  is  capable  of  doing,  under  given  cir- 
cumstances. 

Thus  we  may  speak  of  the  work  done  by  an  engine,  or  other 

agent,  as  the  energy  supplied  by  it.  We  may  speak  of  the  energy 

given  out  by  a  water-fall  in  a  given  time.  And  we  may  say  that 
the  power  of  an  engine  means  the  rate  at  which  it  develops 
energy. 

Work  done  against  Gravity.— To  raise  a  body  AveighingW 
lbs.  from  a  given  position  to  another,  which  is  vertically  above 

the  first,  and  at  a  distance  h  feet  from  it,  a  force  W  lbs.'  weight 
nmst  be  exerted  through  h  feet.  Hence  the  work  done  is  WA 

foot-pounds. 
Next,  suppose  that  the  body  is  raised  from  a  point  ̂   to  a 

point  B  which  is  not  vertically  above  ̂ 4,  but  is  at  a  higher  level 

than  A.  Suppose  that  the  perpendicular  distance  from  B  on  the 
horizontal  plane  through  A  is  h  feet.  (In  this  case  also  B  is  said 
to  be  h  feet  above  J.) 

The  motion  may  be  accomplished  by  moving  the  body  horizon- 
tally to  a  position  vertically  below  i?,  and  next  from  this  position 

to  B.  In  the  first  of  these  motions  no  work  is  done  ;  and  in  the 

second  woi'k,  WA  foot-pounds,  is  done. 
Hence  the  work  done  in  moving  the  body  from  A  to  B  is  WA 

foot-pounds. 
Or  we  may  show  the  same  thing  by  saying  :  Since  h  feet  is 

the  resolved  part  of  the  displacement  in  the  direction  of  the 

force  W  lbs.  weight,  therefore  the  work  done  is  WA  foot-pounds. 
Again  we  have  frequently  to  consider  the  work  done  hy  the 

action  of  gravity.  Whenever  a  body  descends  vei'tically,  or 
moves  to  a  place  at  a  lower  level,  the  force  which  is  the  weight 
of  the  body  does  a  quantity  of  work  equal  to  the  product  of 

the  weight  and  the  depth  through  which  the  body  descends 
vertically. 

This  work  may  be  utilized  in  many  ways.  For  instance  on 

several  mountain  railways  the  weight  of  a  stream  of  water  is 

made  to  do  useful  work.  Two  cars  ai'e  connected  by  a  chain  or 
rope  which  passes  over  a  pulley  at  the  top  of  the  line.  Each  car 

has  a  water-tank  attached  to  it.  The  one  at  the  top  has  its  tank 
filled,  and  by  its  greater  weight  it  descends  drawing  up  the  other, 
the  tank  of  which  is  empty.     When  the  full  car  gets  to  the 
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bottom  of  the  line  it  is  emptied,  and  the  other,  now  at  the  top, 
is  filled. 

Energy  of  Fall  of  Water. — Again,  when  a  mill-wheel  is 
turned  by  means  of  a  water-fall  it  is  the  weight  of  the  water 
descending  through  a  distance  vertically  which  does  the  work  or 

supplies  the  energy  that  is  obtained.  The  gross  amount  of  work 

done  by  the  water-fall  in  any  given  time  is,  of  course,  measured 
by  the  weight  of  water  that  falls  in  that  time  and  the  ver- 

tical distance  through  which  it  falls.  To  calculate  the  power 
of  the  fall  we  must  know  what  quantity  of  water  falls  in  a  given 
time,  or  the  rate  at  which  it  falls. 

Work  done  in  Stretching  a  Rod  or  Wire. — Suppose  that  a 
force  is  applied  to  a  rod  or  wire  and  stretches  it  by  an  amount 

proportional  to  the  stretching  force. 
Let  the  elongation  produced  be  I,  and  the  value  of  the  force 

required  to  produce  this  elongation  F. 

The  mean  value  of  the  force  reckoned  over  the  whole  elonga- 
tion is  F/2.  And  the  entire  quantity  of  work  done  is  the  same 

as  that  which  would  be  done  by  the  force  F/2  acting  through  the 
distance  I. 

:.  Tlie  work  done  is  \  Tl,  or,  the  work  is  07ie  half  of  the  pro- 
duct of  the  stretching  force  and  the  elo7igation  produced. 

Exercises  VIII.  a. 

\.  What  work  is  done  by  a  man  in  raising  120  lbs.  through  a 
vertical  height  of  60  feet;  and  if  he  works  at  xo  H. P.,  how  long 
does  he  take  to  do  it  ? 

2.  How  much  work  does  a  man  weighing  10  stone  do  in  ascending 
30  feet;  and  if  he  does  it  in  1  minute,  at  what  H.P.  does  he  work  ? 

3.  What  work  does  a  man  do  in  riding  a  bicycle  10  miles,  the 

resistance  to  motion  being  3  lbs.'  wt.  ? 
4.  What  work  does  a  man  weighing  150  lbs.  do  in  ascending  a 

mountain  1500  feet  high  ? 

5.  If  a  gymnast  who  weighs  150  lbs.  climbs  a  rope  at  the  rate  of 

15  inches  per  second,  show  that  he  works  at  just  over  ^j  of  a  horse- 
power ? 

6.  A  hanmier  strikes  a  nail  and  drives  it  \  inch  into  a  piece  of 

wood.  The  resistance  to  penetration  is  120  lbs.'  wt.,  and  the 
impact  lasts  for  ̂ V  second.  At  what  rate  is  work  done  against 
this  resistance  ? 
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7.  What  work  is  done  against  gravity  in  pumping  1000  gallons 
of  water  to  a  height  of  40  feet,  a  gallon  of  water  weighing  10  lbs.  ? 

8.  Find  the  entire  number  of  foot-tons  of  work  done  by  a  porter 
in  carrying  six  loads  of  60  lbs.  each  to  a  vertical  height  of  30  feet, 
the  man  himself  weighing  12  stone. 

9.  Show  that  an  engine  working  at  5  H.  P.  does  about  4420  foot- 
tons  per  hour. 

10.  Find,  to  the  nearest  second,  how  long  an  engine  of  22  H.P, 
would  take  to  pump  10,000  cubic  feet  of  water  to  a  height  of 
45  feet,  f  of  the  energy  developed  being  utilized. 

11.  What  must  be  the  nett  H.P.  of  engines  and  pumps  required 
to  keep  a  pit  clear  of  water,  if  the  water  flows  in  at  the  rate  of 
4000  cubic  feet  per  minute,  and  has  to  be  pumped  to  an  average 
height  of  60  feet? 

12.  What  is  the  ratio  of  the  nett  H.P.  of  an  engine  and  crane  to 
the  indicated  H.P.  of  the  engine,  when  the  indicated  H.P.  is  15,  and 
15  cwts.  are  raised  by  the  crane  through  4  feet  in  every  second  ? 

13.  In  raising  5  cwts.  of  stone  from  a  quarry  every  3  hours  through 
a  height  of  33  feet,  at  what  H.  P.  on  the  average  is  work  done  ? 

14.  A  body  weighing  540  lbs.  is  drawn  up  by  means  of  a  rope 
coiled  round  a  cylindrical  drum,  the  diameter  of  which  is  10  inches. 
How  much  work  is  done  in  16  turns  of  the  drum? 

15.  A  cylindrical  drum,  2  feet  in  diameter,  is  used  to  draw  up  a 
mass  of  6  cwts.  by  means  of  a  rope  passing  round  the  drum.  If 

energy  is  developed  at  the  rate  of  7^^  H.P.  at  the  drum,  how  many times  does  it  revolve  in  a  minute  ? 

16.  The  metre  being  39  370  inches  and  the  kilogram  2*2046 
pounds,  show  that  a  kilogram-metre  is  equal  to  7  '233  foot-pounds. 

17.  With  the  data  of  the  last  question  show  that  a  cheval-v^apeur 
is  about  542*5  foot-pounds  per  second. 

18.  The  section  of  the  stream  which  turns  a  mill-wheel  is 
10  feet  X  2  feet ;  the  water  flows  at  5  feet  per  second,  and  has  a  fall 

of  22  feet  in  turning  the  wheel.  If  the  wheel  gives  out  -5  of  the 
energy  of  the  fall  of  the  water,  find  its  rate  of  output  in  horse- 
power. 

19.  Express  a  horse-power  in  foot-tons  per  hour. 

20.  Express  a  horse-power  in  kilogram-metres  per  second. 
21.  Why  cannot  a  horse-power  be  expressed  in  kilogram-metres? 
22.  Can  a  horse-power  be  expressed  in  kilogram -metres  per  minute  ? 

23.  Criticise  the  statement:  "A  horse-power  is  equal  to  the 
work  done  in  raising  550  pounds  through  a  foot  in  one  second." 

24.  A  spiral  spring  requires  a  force  of  one  pound  weight  to 
stretch  it  an  inch.  How  much  work  is  done  in  stretching  it 
3  inches?     (Camb.  Sr.  Loc,  Stat.  Dyn.  and  Hydro.,  1896.) 
E.S.  I 
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Work  done  when  several  Bodies  are  raised  into  new 

positions. — If  several  bodies  are  raised  from  given  p,psitions 
into  new  positions  (not  necessarily  vertically  above  their  old 
ones),  it  is  clear  that  the  entire  work  done  is  the  sum  of  the 

products  got  by  multiplying  the  weight  of  each  body  and  the 
vertical  height  through  which  it  is  raised. 

We  shall  now  prove  an  important  and  useful  expression  for 
the  work  done  in  this  case. 

Let  the  weights  of  the  various  bodies  be  Wj,  W2,  W3,  etc. 
Let  their  heights  above  a  fixed  horizontal  plane  be  at  first 

Ai,  ̂2,  fh,  etc.,  and  afterwards  A'j,  h'.i,  A'3,  etc. 
Let  the  weight  of  all  the  bodies  together  be  W.  And  let  the 

heights  of  their  common  Centre  of  Gravity  above  the  plane, 

before  and  after  moving,  be  H  and  H'. 
The  work  done  is 

Wi  (A/  -  h^  +  W2(/«2'  -  ■^2)  +  WaC^a'  -  A3)  +  etc. 

=  WiA/  +  W2^2'  +  W3A3'  + . . .  -  (WjA^  +  W2A2  +  W3A3  + . . .) 

= Wif'  -  Wff=W  {II'  -  H). 

Thus  the  entire  work  done  is  the  product  of  the  weight  of 
all  the  bodies  moved,  and  the  height  thro^ogh  which  the  common 

centre  of  gravity  is  raised. 

In  what  has  just  been  done  we  may  suppose  that  each  body  is 

a  very  small  particle,  so  that  the  whole  of  it  is  practically 

situated  at  one  point,  the  distance  thi'ough  which  it  is  raised 
being  thus  the  vertical  distance  between  its  two  point  positions  ; 

or  else  we  may  suppose  that  each  body  is  raised  without  rota- 
tion, so  that  each  point  of  a  body  is  raised  through  the  same 

distance  as  any  other  point  of  the  same  body. 

Suppose  a  body  of  extended  dimensions  to  be  moved  from  one 

position  to  another.  To  find  the  entire  work  done  against 
gravity.  This  is  the  same  as  the  work  done  in  moving  the 

various  elementary  particles  into  their  new  positions.  And,  as 
we  have  just  seen,  this  is  equal  to  the  sum  of  the  weights  of  the 

particles  x  height  through  which  their  C.G.  is  raised  ;  that  is,  it 
is  equal  to 

Weight  of  body  x.  height  through  which  its  C.G.  is  raised. 
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Example. — Find  the  work  done  against  gravity  in  drawing 
water  from  a  depth  of  12  feet  below  the  surface  of  the 
earth  and  filling  a  rectangular  tank  3  feet  deep  x  6  feet  x 
4  feet,  the  bottom  of  the  tank  being  10  feet  above  the  earth. 

Volume  of  water  raised  =  4x6x3  cub.  ft. 

.-.    Mass  of  water  raised  =  4  x  6  x  3  x  62|  lbs. 
Centre  of  gravity  of  water  is  raised  through 

12+ 10  +  11  feet  =  23|  feet. 

.-.    Work  done  =  4  x  6  x  3  x  62|  x  23|  ft.  lbs. 
=  105750  ft. -lbs. 

Example. — A  rectangular  block  of  wood  measuring  6  inches 
X  8  inches  x  10  inches,  and  weighing  27  lbs.  per  cubic 
foot,  stands  on  one  of  its  6x10  faces. 

Find   the   work   done   in   pushing   it 
over,  so  that   it  falls  on   one   of   its 
8  X  10  faces. 

In  pushing  the  block  over  work  is  done 
till  its  C.G.  comes  just  above  the  edge 
about  which  it  turns.     After  this  the 
block  falls  over. 

At   that   instant   the   C.G.   is  5   inches 

above  the  plane,  and  it  was  4  inches  ^'°-  ̂^^• 
above,  so  that  it  is  made  to  rise  1  inch. 

Mass  of  block  =  — -— — — x  27  lbs.  =  -\5  lbs. 1728 

.•.    Work  done  =  YV  ><  V-  ft.-lbs. =f''ffc.-lbs. 

Indicated  and  Effective  Power. — By  the  power  of  an  engine 
may  be  meant 

(a)  The  rate  at  which  work  is  done  by  the  pressure  of  the 
steam  or  gas  as  it  expands  ;  or 

(b)  The  rate  at  which  useful  work  is  got  from  the  engine. 

This  is  less  than  («)  by  the  rate  at  which  work  is  lost  in  over- 
coming frictional  resistances,  etc.,  in  the  parts  of  the  engine. 

(a)  may  be  called  the  gross  and  (h)  the  nett  power  of  the 
engine. 
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Expressed  in  horse-power  they  are  generally  spoken  of  as  the 
indicated  and  the  effective  H.P.  respectively. 

Work  done  by  the  pressure  of  Steam  in  an  Engine.— Con- 
sider the  piston  of  the  engine  moving  to  and  fro  in  its  cylinder, 

under  a  pressure  of  steam  on  one  side  only  as  it  moves  one  way, 
and  on  the  other  side  as  it  moves  the  other  way. 

Let  the  area  of  the  face  of  the  piston  be  A  square  inches. 

Let  the  length  of  the  stroke,  that  is  the  single  stroke, 
measured  one  way  only,  or  the  distance  between  the  extreme 

positions  of  the  piston,  be  I  feet. 

Let  the  pressure  of  steam  acting  on  the  piston  be  p  lbs.'  wt. 
per  square  inch. 

Let  the  number  of  single  strokes  made  in  a  minute  be  n. 

Then  the  entire  pressure  acting  on  the  piston  is  p^  lbs.'  wt. 
The  work  done  in  one  stroke  is  p4^  foot-pounds. 

The  work  done  per  minute  is  "pAln  foot-pounds. 
The  H.P,  at  which  steam  pressure  works  is ■pAln 

33,000* 

Example. — A  steamer  is  going  at  the  rate  of  16  miles  an 
hour  ;  the  H.P.  of  her  engines  is  5000.  What  is  the 
resistance  to  motion  through  the  water  ? 

[In  this  question  we  require,  of  course,  the  effective  H.P. 
of  the  engines  ;  and  this  is  clearly  what  is  meant  to  be  given  as 
5000.] 

Let  the  required  resistance  be  F  lbs.'  weight. 
The  distance  travelled  in  one  minute  is 

16x5280     ,„     oQt    4r 
  -p^   =  16  X  88  feet. 

oO 
the  work  done  in  1  min.  =  16  x  88  F  ft.-lbs. 

Also  the  work  done  in  1  min.  =5000  x  33000  ft.-lbs. 

.-.    16  X  88  F  =  5000  X  33000, 
5000x33000 *~      16x88 

=  117,000  about. 

The  resistance  is  about  117,000  lbs.'  weight. 
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Questions  on  Bicycles. — To  say  that  a  bicycle  is  geared  to 
so  many  inches  means  that  it  travels  as  far  for  one  complete 
revolution  of  the  cranks  (or  from  the  instant  when  either  foot 

of  the  rider  is  in  its  lowest  position  to  the  next  instant  when  it 

is  again  in  its  lowest  position)  as  a  wheel,  whose  diameter  is  the 
same  number  of  inches,  would  travel  in  one  revolution  when 

rolling  along  the  ground. 

Example. — A  bicycle  is  geared  to  64  inches.  The  rider 
pedals  at  the  rate  of  70  revolutions  per  minute,  and 

works  at  ̂ \-  H.P.     What  is  the  resistance  to  motion  ? 

Let  the  resistance  to  motion  be  F  lbs.'  wt. 
The  distance  travelled  in  1  minute  is 

^-  X  f  f  X  70  feet. 
.".    work  done  in  1  minute 

=  -Y-  X  ft  X  70  X  F  ft.-lbs. 

.-.    -^-  X  f  I X  70  X  F  -  yV  X  33000. 
__  33000x7x12 

16  x"22x  64x70' 
Required  resistance  =  1  "8  lbs.' weight,  about. 

Exercises  VIII.  b. 

1.  In  rolling  a  cylinder,  2  feet  in  diameter,  and  weighing  2  cwts. , 
along  a  horizontal  road  it  comes  to  a  ridge  across  the  road  1|  inches 
high.  How  much  work  is  done  iti  getting  the  cylinder  past  the 
ridge  ? 

2.  What  is  the  work  done  against  the  action  of  gravity  in 
bringing  the  earth  from  a  well,  4  feet  wide  and  10  feet  deep,  to 
the  level  of  the  surface,  the  earth  weighing  120  lbs.  per  cubic  foot  ? 

3.  What  work  is  done  in  rolling  up  a  blind  on  a  roller  at  the  top, 
the  blind  being  6  feet  long  and  weighing  3  pounds  ? 

4.  What  work  is  done  in  drawing  a  bucket  of  water  from  a  well, 
40  feet  deep,  the  bucket  weighing  8  lbs.,  the  water  100,  and  the 
rope  9  oz.  per  foot  ? 

5.  The  diameter  of  the  piston  of  a  steam  engine  is  10  inches  ; 
the  length  of  the  stroke  is  3  feet.  The  engine  is  working  with  a 

pressure  of  300  lbs.'  wt.  to  the  square  inch  on  the  piston,  and 
making  90  strokes  per  minute.     What  H.P.  does  it  develop? 
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6.  An  engine  has  two  pistons  each  of  30  centimetres  diameter  ; 

the  length  of  the  stroke  being  1-2  metres.  The  fly-wheel,  to  which 
the  pistons  are  directly  connected,  makes  40  complete  revolutions 
per  minute  ;  and  in  each  stroke  the  mean  excess  of  the  pressure  on 

one  side  of  a  piston  over  that  on  the  other  is  40  kilograms'  wt.  per 
square  centimetre.  Find  the  rate  at  which  the  engine  is  working 
in  chevals. 

7.  A  cylindrical  pit,  20  feet  in  diameter  and  40  feet  deep,  is  filled 
to  a  depth  of  30  feet  with  water.  Show  that  a  50  H.P.  engine  will 
empty  it  in  about  9  minutes. 

8.  Find  the  number  of  foot-tons  of  work  done  in  laising  16  cwts. 
of  stone  through  40  feet  by  means  of  a  chain  weighing  12  pounds 
per  foot. 

9.  A  cylinder,  7  feet  long  and  having  diameter  of  end  2  feet  and 
weighing  800  lbs.,  lies  on  a  horizontal  plane.  How  much  work 
must  be  done  to  raise  it  up  on  its  end  ? 

10.  A  book,  8  inches  long,  1  inch  thick,  and  weighing  2  pounds, 
stands  up  on  end.     What  work  must  be  done  to  push  it  over  ? 

11.  A  man  does  1,027,200  foot-pounds  of  work  in  8  hours  ;  what 
is  his  power,  the  units  being  foot-pounds  and  minutes?  (Science 
and  Art,  1897.) 

12.  A  machine  is  contrived,  by  means  of  which  a  weight  of 
3  tons,  by  falling  3  feet,  is  able  to  lift  a  weight  of  168  lbs.  to  a 
height  of  100  feet.  Find  the  work  done  by  the  falling  body,  and 
what  part  of  the  work  is  used  up  in  overcoming  the  friction  of  the 
machine.     (Science  and  Art,  1897.) 

13.  Define  a  foot-pound  and  a  horse-power. 
A  steam  crane  raises  a  weight  of  5  tons  uniformly  through  a 

height  of  110  feet  in  40  seconds.  Find  at  what  H.P.  it  is  working. 
(Science  and  Art,  1898.) 

14.  The  base  of  a  cylinder  has  a  diameter  of  3  feet,  and  its  height 
is  4  feet ;  the  cylinder  is  of  uniform  density  and  weighs  25  cwts. 
Find  how  many  foot-pounds  of  work  must  be  done  in  throwing  it 
over.     (Science  and  Art,  1898.) 

Summary. 

Work  is  done  by  an  agent  v/hen  this  exerts  a  force  through  a 
distance. 

The  measure  of  the  work  done  is 

(a)  The  product  of  the  displacement  and  the  resolved  part  of 
the  force  in  the  direction  of  the  displacement ;  or, 

(&)  The  product  of   the   force   and   the   resolved   part   of    the 
displacement  in  the  direction  of  the  force  ; 

and  it  may  be  positive,  zero,  or  negative. 
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The  unit  of  work  is  that  done  when  unit  force  acts  through  unit 
distance. 

The  foot-pound,  or  British  Engineers'  unit  of  work,  is  the  work 
done  when  the  force  of  a  pound's  wt.  acts  through  a  foot. 

The  kilogram-metre  is  the  work  done  when  a  force  equal  to  the 
weight  of  a  kilogram  acts  through  a  metre. 

Power  means  rate  of  doing  work,  and  may  be  expressed  in  foot- 
pounds per  second. 

A  horse-power  is  the  rate  of  doing  work  at  33,000  foot-pounds 
per  minute,  or  550  foot-pounds  per  second. 

A  cheval-vapeur  is  the  rate  of  doing  work  at  75  kilogram-metres 
per  second.  It  is  equal  to  about  542  foot-pounds  per  second  ;  and 
is  thus  a  little  less  than  a  horse-power. 

Energy  means  the  same  thing  as  work,  and  is  generally  used  as 
applying  to  the  work  which  can  be  got  from  an  agent  in  given 
circumstances. 

The  work  done  against  gravity  in  raising  a  body  is  equal  to  the 
weight  of  the  body  x  the  height  through  which  it  is  raised  vertically. 
The  work  done  by  the  action  of  gravity  when  a  heavy  body 

descends  is  equal  to  the  weight  of  th€i  body  x  the  vertical  distance 
through  which  it  descends. 

The  work  done  against  gravity  in  raising  any  bodies  to  new 
positions  is  equal  to  the  product  of  the  weight  of  all  the  bodies  and 
the  vertical  height  through  which  the  centre  of  gravity  of  the 
bodies  is  raised. 

The  gross  or  indicated  H.P.  of  an  engine  may  be  calculated  from 
the  data  of  its  dimensions,  rate  of  moving,  and  steam -pressure. 

The  nett  or  eflFective  H.P.  is  less  than  this  because  of  the  work 
lost  in  friction,  etc. 



CHAPTER  IX. 

MACHINES.     MECHANICAL  ADVANTAGE.     EFFICIENCY. 
LEVERS  AND  INCLINED  PLANE. 

Machines. — A  Machine  is  an  arrangement  for  transmitting 
a  force  from  one  line  of  action  to  another. 

In  the  process  of  transmission  by  a  machine  the  magnitude 
of  the  force  is,  in  general,  altered  ;  it  may  be  increased  or 
diminished. 

In  Mechanics  there  are  five  simple  machines,  sometimes  called 
the  Mechanical  Powers.  These  are  (1)  The  Lever,  (2)  The 

Inclined  Plane,  (3)  The  Pulley,  (4)  The  Wheel  and  Axle,  (5)  The 
Screw. 

In  investigating  the  properties  of  any  one  of  these  machines 
we  shall  consider  the  relation  between  the  magnitude  of  a  force 

applied  to  the  machine  and  that  of  the  force  transmitted  by  the 
machine,  or,  in  other  words,  the  relation  between  the  force 

applied  and  the  resistance  which  the  force  overcomes  by  the 
help  of  the  machine. 

In  these  cases  the  force  applied  to  a  machine  is  frequently 

spoken  of  as  a  'power.  But  it  should  be  noticed  that  this  is  not 
a  very  accurate  use  of  this  word,  the  proper  meaning  of  the 

word  power  in  Mechanics  being  rate  of  doing  work. 

The  force  applied  has  also  been  called  the  Eflfort. 
In  finding  the  relation  between  the  forces  we  shall,  in 

general,  suppose  that  the  parts  of  the  machine  are  frictionless. 
If  there  is  friction  this  relation  will  be  modified.  When  the 

force  applied  acts  to  overcome  the  resistance  and  set  the 
machine  in  motion  against  it,  the  friction  acts  to  oppose  the 

force,  and  tends  to  keep  the  machine  at  rest.     Hence,  in  con- 
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sequence  of  friction  in  a  machine  the  force  necessary  to  over- 
come a  given  resistance  is  always  greater  than  it  would 

otherwise  be. 

Mechanical  Advantage. — In  any  machine  the  ratio  of  the 
resistance  overcome  to  the  force  applied,  or  the  effort,  is  called 
the  mechanical  advantage.  This  ratio  may  be  a  quantity  greater 
or  less  than  unity. 

In  a  case  in  which  there  is  no  friction  the  work  done  by  the 
force  is  exactly  equal  to  the  work  done  against  the  resistance  or 

the  ejfFective  work  produced.  But,  in  consequence  of  friction, 
some  of  the  work  expended  is  always  lost,  going  to  produce 
heat  in  the  parts  of  the  machine  where  friction  acts.  Hence 
the  work  obtained  is  less  than  that  expended. 

Efficiency  of  a  Machine. — In  any  machine  the  ratio  of  the 
useful  work  to  the  work  expended  is  called  the  e^fficiency. 

It  is  clear  that  by  diminishing  friction  we  increase  the 

efficiency,  and  the  ultimate  ideal  value  of  the  efficiency,  when 
all  friction  has  been  eliminated,  is  unity.  This  is  a  value  which 

is  never  completely  attained  in  any  machine.  And  the  more 
complicated  a  machine  the  more  friction  must  there  be  in  its 

parts,  and  the  less  is  the  efficiency  which  we  can  expect  from  it. 

The  efficiency  of  a  machine  is  not  a  constant  quantity.  It 
will  depend  on  the  care  taken  of  the  machine,  that  is,  on  the 

lubrication  of  its  parts,  etc.,  perhaps  also  on  the  speed  at  which 
it  is  working,  and  on  the  forces  in  action,  the  efficiency  for  one 
resistance  being  different  from  that  for  another. 

In  any  case  the  meaning  of  efficiency  is  the  ratio 

useful  work  obtained 
work  expended 

in  the  given  circumstances. 

Other  Expressions  for  Efficiency. — Two  other  useful  ex- 
pressions for  the  efficiency,  in  terms  of  forces,  can  be  obtained. 

Suppose  that  with  a  given  machine,  P  and  R  are  correspond- 
ing values  of  the  force  applied  and  the  resistance  overcome  on 

the  supposition  that  no  work  is  lost,  that  is  that  the  efficiency 
is  unity. 

Let  a  and  h  be  correspondin'g  values  of  the  distance  through 
which  P  acts  and  the  distance  through  which  R  is  overcome. 
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Then,  since  the  works  done  by  P  and  against  R  are  equal, 

Pa  =  RZ). 

Now  let  P'  be  the  actual  force  required  to  overcome  the  re- 
sistance R  and  to  work  the  machine. 

Then  the  work  expended  is  P'a. 
And  work  obtained  is  R6. 

•■•  "'»«'"'"^y=Fi=ll=l"   •   w 

Again,  let  R'  be  the  resistance  which  the  force  P'  is  able  to 
overcome  in  working  the  machine. 

Then  work  expended  is  Pa. 

And  work  obtained  is  "R'h. 

^  .  B.'b     R'6     R'  ._. 
••    "^"^"^^^=P^  =  R6  =  R'    ^^> 

These  expressions  (1)  and  (2)  for  the  efficiency  are  useful,  and 
they  are  easily  remembered. 

(1)  is  ratio  of  theoretical  to  actual  applied  force  ; 

(2)  is  ratio  of  actual  to  theoretical  resistance  overcome. 
Each  is  less  than  unity,  as  an  efficiency  always  is,  for  the 

theoretical  force  applied  for  a  given  resistance  is  less  than  the 
actual ;  and  the  actual  resistance  overcome  by  a  given  force  is 
less  than  the  theoretical. 

Velocity  Ratio. — Suppose  that  in  any  machine  while  the 
applied  force  P  acts  through  a  distance  a,  the  resistance  R  is 
overcoVne  through  a  distance  b. 

If  the  machine  is  one  in  which  the  motion  of  the  point  of 

application  of  P  always  bears  the  same  ratio  to  the  motion  of 

the  point  of  application  of  R,  we  may  suppose  a  and  b  to  be  any 
corresponding  displacements  of  any  magnitude  ;  but  if,  as  for 
the  lever,  this  is  not  the  case,  so  that  the  ratio  of  a  to  6  depends 

on  the  amount  of  the  displacement  of  P  and  on  the  position  of 
the  machine  to  begin  with,  we  must  suppose  here  that  a  and  b 
are  both  extremely  small  magnitudes. 

Then  the  ratio  ̂   is  called  the  velocity  ratio  of  the  machine. o 

In  the  lever,  in  which  a  is  not  always  proportional  to  b  for 

large   displacements,  as  we   shall   see,   the  velocity  ratio   will 
depend  on  the  inclinations  of  the  forces  to  the  bar. 
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In  an  ideal  machine,  in  which  no  work  is  lost  in  friction,  the 

works  done  by  P  and  against  R  are  equal,  that  is 

Ta  =  -Rb. 
Thus  the  mechanical  advantage,  which  is  — ,  is  equal  to  -. 

Or,  in  the  ideal  case, 

mechanical  advantage  =  velocity  ratio. 

In  praotice  the  mechanical  advantage  is  always  less  than  the 
velocity  ratio. 

Let  B  be  the  efficiency  of  the  machine. 

„_  useful  work  obtained  _R6_R  .  a 

~       work  expended  Pa     P  '  b' 
Efficiency  =  mechanical  advantage -^velocity  ratio; 

or,  Mechanical  advantage  —  velocity  ratio  x  efficiency. 

Levers. — A  Lever  is  a  rigid  bar  which  can  be  turned  about 
a  fixed  jjoint  acting  as  a  support  on  which  some  point  of  the 

lever  rests.     The  fixed  supporting  point  is  called  a  fulcrum. 
The  bar  or  rod  of  which  a  lever  consists  is  generally  straight, 

but  it  may  be  bent,  and  so  form  a  hent  lever. 

Let  two  forces,  P  and  R,  act  on  the  lever  ACB  having  a 
fulcrum  at  C. 

P  may  be  taken  as  the  force  applied  or  effort,  and  R  as  the 

resistance  to  be  overcome,  considered  as  another  force  acting  on 
the  lever. 

Suppose  the  weight  of  the 
lever  to  be  negligible. 

The  condition  for  equilibrium 

betw^een  P  and  R  is  that  the 
moments  of  P  and  R  about  C 

shall  be  equal  and  in  opposite 
senses. 

Thus,  if  Ci/,  CN  are  perpen- 
dicular to  the  lines  of  action  of  „  .  ,  ^ 

Fig.  107.— Forces  acting  on  lever  and 
P  and  Q,  producing  equilibrium. 

-?.CM=Qt.CN. 
The  points  A.,  B,  C  (that  is,  the  points  of  application  of  the 

force  and  resistance,  and  the  fulcrum)  may  be  arranged  in  a 
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different  order,  as  the  next  two  figures  show.  But  the  condition 

given  above  is  always  the  necessary  and  suiiicient  condition  of 

equilibrium  for  the  lever. 

Fig.  108. Fig.  109. 

In  general,  unless  the  contrary  is  specified,  a  lever  is  supposed 

to  be  straight  and  of  negligible  weight,  and  the  forces  are 

supposed  to  act  at  right  angles  to  it. 
Classes  of  Levers. — Levers  are  divided  into  three  classes 

according  to  the  relative  positions  of  the  fulcrum  and  the  points 

of  application  of  the  resistance  and  the  force  applied.  The  class 

is  called  first,  second,  or  third  according  as  the  Fulcrum,  Resist- 
ance, or  Effort  (also  called  Power)  is  in  the  middle.  This  will 

be  easily  remembered  by  remembering  the  letters  F,  R,  P  in 
the  order  here  given. 

The  figures  here  given  show  the  three  classes  with  the  forces 

B 

YP  +R  tR 
Fig.  110.  Fio.  111. 

acting,  in  the  simplest  cases,  in  which  the  levers  are  straight, 
and  the  forces  at  right  angles 

i^P  to  them. 
In   any    case    we   have    for 

  ^      equilibrium, 

T.CA=-R.CB. 

B._CA 
'■    V~CB' CA 

That  is,  the  Mechanical  Advantage  is  equal  to  the  fraction  -^j^. 

B 

tR 
Fig.  112. 
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In  the  first  case  C  may  be  anywhere  between  A  and  B^  so  that 

CA  and  CB  may  have  any  relative  values. 
In  the  second  case  CA  must  be  greater  than  CB. 
In  the  third  case  CA  must  be  less  than  CB. 

Hence,  in  a  lever  of  the  first  class,  the  mechanical  advantage 

may  have  any  value  ;  in  a  lever  of  the  second  class  it  is  greater 
than  unity,  and  in  a  lever  of  the  third  class  it  is  less  than  unity. 

Examples  of  the  classes  of  Levers. — Class  I. — A  crow-bar 
used  in  the  ordinary  way  to  raise  a  stone  or  other  heavy  body 

at  one  end,  pressing  down  on  some  support  used  as  a  fulcrum 
near  this  end,  the  hands  supplying  the  effort  by  pressing  down 
at  the  other  end. 

A  poker  used  to  raise  coals  in  a  grate. 
Class  II. — An  oar,  the  resistance  to  be  overcome  being  at  the 

rowlock  by  which  the  boat  is  driven  forward,  the  water  against 
which  the  blade  of  the  oar  pushes  acting  as  fulcrum. 

A  wheel-barrow. 

Class  III. — The  limbs  of  animals  ;  for  example,  the  fore-arm 
used  to  hold  up  a  weight ;  the  elbow  joint  is  the  fulcrum,  the 

effort  is  applied  by  the  biceps  muscle  acting  at  a  point  in  front 
of  the  elbow,  and  the  resistance  is  overcome  at  the  hand. 

Examples  of  double  levers  of  the  three  classes  are  to  be  found 

respectively  in  (1 )  pliers,  (2)  nut-crackers,  (3)  sugar-tongs. 
Principle  of  Work  applied  to  Levers  and  to  Machines  in 

general. — In  the  case  of  any  of  the  simple  machines  which  we 
consider  we  may  show,  from  the  relation  existing  between  the 

force  applied  and  the  resistance  overcome  when  there  is  no 

friction,  and  from  the  geometrical  relation  which  we  may  deter- 
mine between  the  displacements  of  the  points  of  application  of 

the  force  and  the  resistance,  that  the  work  done  by  the  force  is 

always  equal  to  that  done  against  the  i-esistance. 
Or,  on  the  other  hand,  by      b1 

assuming    this    principle    we 
may   determine    the    relation 
between    the    force    and    the 

resistance.  F'o.  ii3. 

Suppose,  for  example,  that  we  have  a  lever  A  BC  of  the  first 
class,  fulcrum  at  C,  with  forces  P  and  R  acting  at  A  and  B  at 

right  angles  to  the  lever,  and  in  equilibrium. 
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Now  suppese  that  the  lever  undergoes  a  very  small  displace- 

ment to  the  position  A'CB'.  A  A',  BB'  are  approximately  short 
straight  lines  in  the  directions  of  P  and  R. 

The  work  done  by  P  is  P  .  ̂yl'. 

That  done  against  B  is  R  .  BB'. 
And  we  have  the  geometrical  relation 

AA'  _CA 

BB'~GB' Now,  if  we  assume  that 

V.CA='R.CB, 
it  follows  that  P  .  J  ̂'  =  R  .  BE. 

Thus  the  two  quantities  of  work  are  equal. 

Again,  if  we  assume  that 

V.AA'='B,.BB, 

it  follows  that  "P  .  CA='R, .  CB, 
the  relation  that  must  exist  between  P  and  R. 

If  the  force  P  is  just  sufficient  to  equilibrate  R,  it  will  not,  of 

course,  produce  any  displacement.  But  supposing  the  entire 
absence  of  all  such  resistances  as  friction  forces,  a  force  which  is 

ever  so  little  greater  than  P  will  displace  the  lever  and  do 

work  against  the  action  of  R.  The  work  done  by  this  force, 
since  it  is  greater  than  P,  is  greater  than  the  work  which  would 

be  done  by  P  for  the  same  displacement,  but  can  be  made  to 
differ  from  the  work  of  P  by  as  little  as  we  please. 

It  is  in  this  sense  that  we  may  say  that  the  work  done  by  the 

applied  force  'i^V  .  AA',  and  that  this  is  equal  to  R  .  BB'. 
In  another  sense,  too,  we  may  say  that  the  work  done  by  the 

applied  force,  whatever  this  may  be,  is  equal  to  "P .  AA'  or  to 
R .  BB,  where  P  is  the  force  necessary  to  equilibrate  R.  The 

residue  of  the  work  done  by  the  force  goes  to  set  the  lever  in 

motion,  according  to  the  principles  of  Dynamics. 

Similar  remarks  to  these  apply  to  the  work  done  by  means  of 
other  machines. 

Experiment  25. — Take  a  rod  about  3  feet  long,  and  fasten  it  by 
a  nail  or  screw  passing  through  a  hole  in  the  middle  0  to  a  vertical 
support,  so  that  it  turns  freely  about  the  nail  in  a  vertical  plane 
and  balances  on  it. 

Hang  a  weight,  say  about  4  or  5  lbs.,  to  one  end,  and  by  means  of 
a  spring-balance  connect  a  point  of  the  rod  about  midway  between 
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this  end  and  its  middle  point  to  a  point  about  10  or  12  inches 
vertically  above  0,  so  that  it  remains  horizontal. 

Detern)ine  the  moment  of  the  weight  of  the  body  suspended  at 
the  end  about  O,  and,  by  observing  the  indication  of  the  balance, 
and  measuring  the  perpendicular  distance  from  O  to  the  string 
attaching  the  balance  to  the  rod,  find  the  moment  of  the  pull  in  the 
balance  about  0. 

These  two  moments  should  be  equal. 

Experiment  26, — With  the  same  rod  hand  a  heavy  weight,  about 
20  lbs.,  or  as  much  as  the  rod  and  nail  will  safely  bear,  close  to  0, 
and  maintain  equilibrium  by  pulling  down  with  the  spring-balance, 
keeping  the  rod  horizontal.  Measure  the  short  distance  from  0  to 
the  weight  carefully.  The  spring-balance  may  pull  down  either 
vertically  or  obliquely. 

Determine  the  moments  about  0  of  the  forces  acting  on  the  two 
sides  of  0,  and  show  that  these  are  equal. 

Exercises  IX.  a. 

1.  A  crow-bar  4  feet  long  is  used  to  raise  a  stone  at  one  end, 
resting  on  a  support  two  inches  from  this  end.  The  upward  pres- 

sure against  the  stone  that  is  required  is  600  lbs.'  wt.  With  what 
pressure  must  the  other  end  of  the  bar  be  pressed  down  ? 

2.  A  piece  of  wire  is  held  in  the  jaws  of  a  pair  of  pliers  at  f -inch 
from  the  joint.  The  hands  press  the  handles  together  with  a  force 

of  25  lbs.'  wt.  at  6  inches  from  the  joint.  What  is  the  pressure  on the  wire  ? 

3.  The  load  in  a  wheel-barrow  is  135  lbs.,  and  its  weight  acts  at 
20  inches  from  the  centre  of  the  wheel.  The  horizontal  distance 
from  the  axle  to  the  point  at  which  each  handle  is  seized  is  6  feet  6 
inches.  Find  the  upward  force  with  which  each  handle  must  be 
lifted. 

4.  The  arms  of  a  lever  are  4  inches  and  4  feet,  and  it  is  found 
that  to  overcome  a  resistance  of  120  lbs.'  wt.  a  force  of  10*3  lbs',  wt. 
must  be  exerted,  some  of  the  work  done  being  lost  in  friction,  etc. 
What  is  the  efficiency  of  the  lever  ?  and  what  fraction  of  the  work 
done  is  lost  ? 

5.  A  pair  of  sugar-tongs  holds  a  lump  of  sugar  at  a  distance  of  4^ 
inches  from  the  end  at  which  the  two  members  join.  The  hand 
presses  the  tongs  with  a  force  of  14  oz.  wt.  at  a  distance  of  2^  inches 
from  this  end.  A  force  of  8  oz.  wt.  would  be  sufficient  to  compress 
the  tongs  as  much  with  nothing  between.  What  is  the  pressure  on 
the  lump  of  sugar  ? 

6.  A  body  weighing  20  lbs.  is  held  up  in  the  hand,  the  fore-arm 
being  horizontal  and  the  upper  arm  vertical.  If  the  point  of  attach- 

ment of  the  biceps  is  2  inches  in  front  of  the  point  about  which  the 
fore-arm  turns,  and  the  weight  of  the  body  acts  at  12A  inches  from 
the  same  point,  what  is  the  tension  in  the  muscle  ? 
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7.  Draw  an  equilateral  triangle  ABC,  and  let  BC  represent  a 
weightless  lever  acted  on  at  5  by  a  force  of  7  units  from  A  to  B, 
and  at  G  by  a  force  of  9  units  from  A  to  C ;  if  the  lever  is  at  rest, 
find,  by  construction  or  otherwise,  the  position  of  the  fulcrum  ;  find 
also  the  magnitude  and  direction  of  the  pressure  on  the  fulcrum. 
(Science  and  Art,  1897.) 

The  Inclined  Plane. — This  is  a  plane  surface  inclined  at  an 
angle  to  the  horizon. 

If  the  plane  is  quite  smooth  and  a  body  is  on  it,  the  force 

acting  up  the  plane  and  parallel  to  it,  necessary  to  keep  the 
body  from  sliding  down,  or  necessary  to  draw  the  body  up  the 

plane,  is  less  than  the  weight  of  the  body.  This  is  the  most 
common  direction  for  the  force ;  but  it  may  act  in  other 
directions.  We  shall  consider  the  relations  between  the  force 

and  the  weight  of  the  body  in  this  case  and  in  the  case  in  which 

the  force  acts  horizontally. 

In  the  figure  let  AB  represent  a  line  on  the  face  of  the 
inclined  plane  which  is  a  line  of 

greatest  slope,  that  is,  so  drawn  as 
to  have  as  great  an  inclination  as 

possible  to  the  horizon.  Such  a 
line  will  cut  at  right  angles  the 
horizontal  lines  drawn  on  the  face 

of  the  plane  ;  and  it  will  be  such 

that  a  body  placed  on  the  plane 

at  any  point  of  this  line  tends 
to  slide  down  the  plane  along  the 
line. 

Let  AC  he  a,  horizontal  line 

drawn  vertically  below  AB,  that  is,  so  that  AB  and  AC  are  in 

one  vertical  plane  ;  and  let  BC  be  vertical. 

AB  ia  called  the  length,  AC  the  base,  and  BC  the  height  of  the 

plane. 
Let  them  be  denoted,  respectively,  by  I,  b,  h. 

(a)  Suppose  a  body  of  weight  W  on  the  plane  is  sustained  by 
a  force  P  acting  parallel  to  AB. 

A  third  force,  the  reaction  of  the  plane,  acts  on  the  body. 
Call  this  reaction  R.  Since  the  plane  is  smooth  this  force  is  at 
right  angles  to  its  surface. 

-Principle    of   inclined 
Effort  parallel  to  pis 
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i 

Let  a  be  the  point  in  which  W,  P,  B  meet. 
Draw  he  parallel  to  AB  to  form,  with  the  lines  of  action  of  W 

and  R,  the  triangle  abc. 

Then,    •;*    ac  and  ab  are  at  right  angles  to  AB  and  AC, 
:.    Lbac  =  L  BAG. 

And  L'  at  c  and  C  are  equal. 

.-.    A"  abc,  ABC  are  similar. 
But  abc  is  triangle  of  forces  for  P,  W,  R. 

Z.=  W      R^ "be       ab       ca' 

■    BC    AB^CA' 

,.     P_W_R ~k~T~  b  ' 

(b)  Suppose  a  body  of  weight  W  is  sustained  by  a  force  P 
acting  horizontally. 
Draw  be  horizontally  to  form, 

with  the  lines  of  action  of  W 

and  R,  the  triangle  abc. 
Then  A  abc  is  similar  to  A  ABC. 

^    W^  R_ 

cb       ac       ba ' 

_P__W_R 
■    CB    AC    BA' 

.       P  _W_  R 
'''  '~k-~b~~~r' 

The  mechanical  advantages,  i.e.  the  values  of  W/P,  are  in 

the  two  cases  y  and  y. n         n 

The  most  important  thing  to  bear  in  mind  is  the  ratio  of  P 
to  W  in  case  (a).  This  it  is  not  difficult  to  remember.  In  an 

ordinary  inclined  plane  h  is  small  as  compared  with  h  and  I. 
In  this  case  only  a  small  force  is  required  to  sustain  the  weight. 

P  is  proportional  to  the  height  h.  W,  the  weight  which  P  can 

sustain,  is  proportional  to  the  greater  of  the  remaining  two 

sides.     We  may  notice  that  here  P  acts  at  a  gi'eat  advantage  ; 
E.S.  K 

And 

115. — Principle  of  inclined 
Effort  horizontal. 
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the   mechanical   advantage   is  the   greatest  ratio  that  can  be 
formed  of  the  three  sides,  h^  I,  h. 

Principle  of  Work  applied  to  Inclined  Plane.— As  an  ex- 
ample of  the  application  of  the  principle  of  work  let  us  consider 

the  relation  between  P  and  W  in  case  («). 

Here,  there  is  a  third  force  R  acting  on  the  body.  But  the 
displacement  of  the  body  is  always  in  a  direction  at  right  angles 
to  R,  so  that  R  does  no  work. 

Hence  if  P  is  the  force  necessary  to  counterbalance  W,  the 

work  done  by  P  in  displacing  the  body  by  any  distance  up  the 
plane  is  equal  to  the  work  done  against  W. 

Now  let  us  suppose  the  body  drawn  up  the  whole  length  I  of 

the  plane,  and  consequently  raised  through  a  vertical  height  h. 
The  work  done  by  P  is  P .  Z. 

That  done  against  W  is  W .  A. 

.-.    P^=WA. 

Inclination  of  Plane. — The  inclination  of  an  inclined  plane 
is  frequently  specified  by  mentioning  the  vertical  height  that 

the  plane  rises  in  a  given  length,  measured  along  its  face  or 

sloping  surface. 
Thus  if  the  slope  of  a  plane  is  said  to  be  1  in  5,  it  is  meant 

that  it  rises  by  1  unit  for  every  5  units  along  its  face ;  or  that 

the  ratio  height  :  length  of  sloping  surface  =  1:5. 

Experiment  27. — Take  a  flat,  smooth  board  about  2  or  3  feet 
long  and  8  inches  wide  or  upwards.  Rest  one  end  on  a  horizontal 

table  and  raise  the  other  end  about  4-  or  ̂   of  the  length  of  the  board. 
Get  a  small  trolly  or  carriage  small  enough  to  run  on  the  board 

and  with  well-made,  smoothly  running  wheels.  Load  it  to  bring 
_  its  entire   mass  M'ith   load 

up  to  about  8  or  10  pounds. 
Instead  of  the  trolly  a 

turned  cylinder  of  heavy 
wood  with  two  small  screws 
or  nails  at  its  ends  carried 

by  a  wire  as  shown  in  the 
figure  may  be  used. 

Use  a  spring  balance  to 
hold  the  trolly  or  cylinder 

Fio.  116.— Experiment  with  inclined  plane,      on    the   slope,    the    balance 
Effort  parallel  to  plane.  p^^jlj^^^,  directly  up  the  plane 
and  parallel  to  its  surface,  and  observe  the  pull  shown  by  the  balance. 
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Find  the  ratio  of  the  pull  of  the  balance  to  the  weight  of  the 
trolly  or  cylinder,  and  l)y  measurement  find  the  ratio  of  the  height 
to  the  length  of  the  inclined  plane  formed  by  the  board. 

These  two  should  be  approximately  equal. 
On  account  of  the  friction  of  the  trolly  the  spring  balance  will 

probably  not  give  a  perfectly  definite  indication.  Take  the  reading 
when  the  trolly  is  on  the  point  of  being  pulled  up  and  that  when  it 
is  on  the  point  of  going  down  ;  and  use  for  the  pull  the  mean  of 
these  two. 

Experiment  28  (Modification  of  last  experiment). — Use  the  same 
board  and  trolly  or  cylinder.  Fix  a  smooth  pulley  to  the  top  of  the 
board.  Pass  a  string  from  the  trolly  over  the  pulley  and  attach 
such  weights  to  its  other  end  as  will  sustain  the  trolly  on  the  board. 
The  best  value  to  take  is  the  mean  between  the  extreme  weights 
that  will  maintain  equilibrium. 

Compare,  as  before,  the  ratios  of  pull  to  weight  and  of  height  to 
length  of  plane. 

Experiment  29. — Using  the  same  board  and  trolly  or  cylinder 
attach  a  spring  balance  to  the  weight  to  sustain  it  on  the  plane  by 
means  of  a  horizontal  pull  as  shown  in  the  figure. 

Determine  the  mean  value  of  the  pull  as  before. 

Fig.  117.— Experiment  with  inclined  plane.     Effort  horizontal. 

Find  the  ratio  of  pull  to  weight ;  and  find  by  measurement  the 
ratio  of  height  to  length  of  plane. 

These  two  should  be  approximately  equal. 

Example. — An  engine  working  at  //  horse-power  draws 
a  train  of  mass  W  tons  up  an   incline  of  1  in  s,  at    V 
miles  per  hour.     Show  that  the  frictional  resistance  to 

,.       .    3757/    2240  TF 11     ,     , 
motion  IS  — ~    lbs.'  wt. I  s 

Let  the  required  resistance  be  F  lbs.'  weight. 
The  force  necessary  to  overcome  the  weight  of  the  train 

on  the  incline  is 

W  ̂       ,       .  ,^      2240  Tr„     ,       .  1^ 
—  tons  weight  =    lbs.'  weight. 
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V  miles  are  passed  over  in  1  hour, 

i.e.  Vx  5280  feet  are  passed  over  in  3600  sees. 

.'.    ----  feet  are  passed  over  in  1  sec. 1 5 

1    ,         .     T  ,  ,  .         22  F/2240  W    „N 
.*.    work  done  in  1  second  by  engme  =  — — I  +r  )• 

2240  TT  15x550^ 

s       ̂ ^  22  F     * 

-_375^  2240  TT 
^~     V  s      ' 

Exercises  IX.  b. 

1.  The  height  of  an  inclined  plane  is  to  its  length  as  3  is  to  5. 
Find  the  force  acting  parallel  to  the  face  of  the  plane  necessary  to 
sustain  a  mass  of  100  lbs.  on  the  plane,  and  find  the  pressure  on  the 
plane. 

2.  With  the  same  plane  find  the  force  acting  horizontally  which 
will  hold  the  mass  of  100  lbs.  on  the  plane,  and  find  the  pressure  on 
the  plane. 

3.  What  work  is  done  by  a  horse  against  the  action  of  gravity  in 
drawing  a  carriage  with  its  load,  all  weighing  1000  lbs.,  100  yards 
up  a  slope  of  1  in  25  ? 

4.  To  draw  100  lbs.  up  a  plane  40  yards  long  the  force  required 

is  8  lbs.'  wt.     What  is  the  height  of  the  plane  ? 
5.  The  work  done  in  drawing  100  lbs.  along  24  feet  of  an  inclined 

plane  is  300  foot-pounds.  Show  that  the  slope  of  the  plane  is 
1  in  8. 

6.  The  base  of  an  inclined  plane  is  17  feet  and  the  height  2  feet. 
Find  the  work  done  in  drawing  a  body  weighing  100  lbs.  up  17  feet 
of  the  slope. 

7.  An  inclined  plane  is  4  feet  high  ;  and  to  sustain  a  body  on  it 
a  force  equal  to  ̂   of  the  weight  of  the  body,  acting  parallel  to  the 
face  of  the  plane,  is  required.  What  is  the  length  of  the  base  of 
the  plane  ? 

8.  How  many  foot-tons  of  work  are  done  by  an  engine  against 
the  action  of  gravity  in  drawing  a  train  of  60  trucks  up  one  mile  of 
an  incline  of  1  in  50  ? 

9.  A  body  is  held  on  a  smooth  inclined  plane  of  slope  1  in  50  by 
means  of  a  force  acting  parallel  to  the  face  of  the  plane.  Show 
that  the  pressure  on  the  plane  is  less  than  the  weight  of  the  body  by 

about  5^^cro  of  the  weight. 
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10.  A  body  rests  on  a  rough  plane.  The  plane  is  tilted  up  till  it 

makes  an  angle  of  30°  with  the  horizon,  and  the  body  then  begins  to 
slide ;  show  that  the  friction  force  at  that  instant  is  half  the  weight 
of  the  body. 

11.  An  engine  pulls  a  train  of  mass  W  tons  down  an  incline  of 
1  in  s,  at  the  rate  of  V  miles  an  hour.  The  frictional  resistance 

is   rv  lbs.'   wt.    per   ton.     Show    that   the   H.P.   of   the   engine   is 

12.  A  cyclist  and  his  machine  weigh  180  lbs.  To  ascend  a  slope 
of  1  in  30  at  5  miles  an  hour,  at  what  H.P.  must  he  work  (1)  if 
there  is  no  frictional  resistance,  (2)  if  the  frictional  resistance  is 
3  lbs.'  wt.? 

13.  What  must  be  the  inclination  of  the  plane  that  a  force  P  will 
support  the  same  weight  whether  it  acts  horizontally  or  parallel  to 
the  length  of  the  plane?     (Coll.  Precep.,  1897.) 

14.  When  a  force  F,  acting  horizontally,  supports  a  weight  W  on 
an  inclined  plane  rising  a  height  of  28  to  a  length  of  100,  find  the 
ratio  of  i^  to  W.     (Coll.  Precep.,  1898.) 

15.  A  body  weighing  150  kilograms  rests  on  a  smooth  inclined 
plane  which  rises  2  cm.  in  a  horizontal  distance  of  one  metre. 
What  distance  along  the  plane  would  the  expenditure  of  one  million 

ergs  enable  one  to  move  the  bodj'^  ?  N.B. — Gravity  may  be  taken 
as  981  dynes  per  gram.     (London  Matric,  1898.) 

16.  A  lever,  2  feet  long,  has  a  power  equal  to  the  weight  of  10 
pounds  acting  at  one  end,  18  inches  from  the  fulcrum.  What  is  the 
greatest  weight  it  will  support  at  its  other  end  ?  (Oxford  Locals, 
1899.) 

17.  A  vertical  force  /  is  applied  to  a  horizontal  straight  uniform 
lever  of  length  /  at  a  distance  d  from  one  end  of  it.  The  weight  of 
the  lever  is  W.  Find  the  distance  x  from  the  same  end  of  the  lever 
at  which  a  fulcrum  must  be  placed  in  order  that  the  lever  may  be 
in  equilibrium.     (London  Matric,  1899.) 

18.  Find  what  resistance  acting  vertically  downwards  at  the  end 
of  a  uniform  poker,  which  rests  horizontally  on  the  bar  of  a  grate 
with  3  inches  projecting  into  the  fire,  can  be  overcome  by  a  down- 

ward force  of  10  lbs.'  wt.  applied  at  the  other  end.  The  poker  is 
30  inches  long  and  weighs  4  lbs.     (Camb.  Jr.  Loc,  Mech.,  1897.) 

19.  A  body  weighing  4x^3  lbs.  rests  on  a  smooth  inclined  plane 
whose  length  is  twice  its  height,  under  the  action  of  a  horizontal 

force  of  2  lbs.'  wt.  directed  towards  the  plane,  the  reaction  of  the 
plane  7  lbs. '  wt. ,  and  another  force  ;  determine  the  magnitude  and 
direction  of  the  last.     (Camb.  Jr.  Loc,  March,  1897.) 

20.  What  horse-power  is  required  to  draw  a  weight  of  1  ton  up  a 
smooth  plane,  inclined  at  30°,  at  the  rate  of  20  feet  per  minute? 
(Science  and  Art,  1898.) 
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2L  Find  in  magnitude  and  direction  the  least  force  which  will 
keep  a  body  weighing  100  lbs.  at  rest  on  a  smooth  inclined  plane, 

inclined  at  an  angle  of  45°  to  the  horizontal.  {N.B. — A  graphical 
solution  will  be  accepted.)     (Science  and  Art,  1898.) 

Summary. 

A  machine  is  an  arrangement  for  transmitting  force.  The  mag- 
nitude of  the  force  is  generally  altered  in  the  process. 

The  force  applied  to  a  machine  is  called  the  Effort  (sometimes 
called  Power,  but  this  is  not  a  good  term  for  it) ;  the  force  overcome 
is  called  the  Resistance. 

„    ̂      ,     ,     .       ̂   Resistance 
Mechanical  advantage = — ttzt—z — • Enort 

In  any  practical  case  the  work  done  by  the  effort  exceeds  that 
done  against  the  resistance,  because  some  work  is  lost  in  overcoming 
friction,  etc.,  in  the  parts  of  the  machine. 

In  a  machine 
.  Work  obtained 

Work  expended* If  a  and  h  are  infinitesimally  small  distances  through  which  the 
effort  acts,  and  the  resistance  is  overcome  at  the  same  time  in  any 
machine,  then 

Velocity  ratio  =  =-• 

Mechanical  advantage  =  Velocity  ratio  x  Efficiency. 

Levers. — The  general  necessary  and  sufficient  condition  of  equi- 
librium is  that  the  moments  about  the  fulcrum  of  the  effort  and  the 

resistance  should  be  equal  and  opposite. 
Levers  are  divided  into  three  classes  according  as  Fulcrum,  Resist- 

ance, or  Effort  is  in  the  middle. 
In  any  simple  machine,  if  there  is  no  friction,  the  work  done  by 

the  effort  may  be  shown  to  be  equal  to  that  done  against  the 
resistance.  Or,  assuming  this  principle,  we  can  find  the  relation 
between  the  effort  and  the  resistance. 

With  a  smooth  Inclined  plane  suppose  P  is  the  effort  necessary  to 
sustain  a  body  of  weight  W  on  the  face  of  the  plane,  and  R  is  the 
normal  resistance  of  the  plane.  Let  the  height,  length,  and  base 
be  /^,  l,  h. 

(a)  If  P  is  parallel  to  the  face  of  the  plane, 

P_W    R 

h~T~h' (&)  If  P  is  horizontal, P     W_R 

h~b~l' 



CHAPTER  X. 

PULLEYS. WHEEL  AND  AXLE. 
TOOTHED  WHEEL. 

SCREW. 

Pulley. — A  pulley  is  a  wheel  which  can  rotate  on  an  axis 

passing  through  its  centre,  and  having  a  groove  round  its  cir- 
cumference in  which  a  string  can  lie. 

If  the  axis  of  the  pulley  is  fixed,  so  that  it  is  capable  of  no 

motion  but  mei'e  rotation,  it  is  called  a  fixed  pulley. 
If  the  axis  is  fixed  in  a  frame  or  block,  which  can  be  easily 

moved,  the  pulley  is  called  a  movable  pulley. 
We  shall  suppose,  in  general,  that  the  axis  of  a  pulley  is  quite 

smooth,  and  that  the  string  passing  round  it  is  perfectly  flexible, 
so  that  no  effort  is  required  to  bend  or  unbend  it.  In  these 

circumstances  the  tensions  in  the  two  parts  of  a  string  on  the 

two  sides  of  the  piece  which  lies  in  the  groove  of  a  pulley, 

forming  part  of  a  system  in  equilibrium, 
are  equal  to  one  another. 

A  fixed  pulley  is  used  merely  to  alter 
the  direction  of  the  pull  produced  by  a 

string  ;  by  its  use  we  alter  neither  the 

magnitude  of  the  force  applied  nor  the 

distance  through  which  displacement  is 
produced.  Considered  as  a  machine,  its 
mechanical  advantage  is  unity.  Or,  as  it 

is  sometimes  said,  no  mechanical  ad- 
vantage is  gained  by  using  it. 

Single  movable  Pulley. — Suppose  a  single  movable  pulley  is 

used  to  overcome  a  resistance,  as,  for  instance,  it  may  be,  to 
raise  a  weight. 

Fig.  118.— Fixed  pulley. 
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This  is  done,  as  shown  in  the  figure,  by  attaching  a  rope  to 

the  block  of  the  pulley,  and  by  passing  another  rope  round  the 
pulley,  one  end  of  this  rope  being  fastened 
to  a  fixed  point,  and  the  acting  force  (or 

effort)  applied  to  the  other  end. 
Consider  the  simple  case  in  which  the 

two  parts  of  the  rope  passing  round  the 

pulley  are  parallel  to  one  another. 
Let  P  be  the  applied  force,  and  R  the 

resistance  overcome. 

Since  the  pulley  is  in  equilibrium  under 
the  action  of  the  force  R  acting  one  way, 

and  two  forces  each  equal  to  P  acting  the 
other  way,  we  have 

2P  =  R. 
Fig.    119.— Single 

movable  pulley. 

The  mechanical  advantage  of  the  single  movable  pulley  is  2. 

Displacements  of  Pulley  and  of  Rope.— If  the  pulley  is 
displaced  in  the  direction  in  which  P  acts  through  a  distance  rf, 
that  is,  so  as  to  overcome  the  force  R  through  a  distance  rf,  the 

point  of  application  of  the  force  P  must  be  displaced  through  a 

distance  2(/.  For,  we  may  suppose  first  that  the  pulley  is  dis- 
placed without  rotating,  and  so  that  the  same  portion  CD  of  the 

rope  remains  in  contact  with  it,  the  part  AC  becoming  slack. 

The  end  B  then  is  displaced  by  d.  Now  let  the  pulley  rotate, 

and  let  AB  become  tight  again.  A  length  d  of  rope  goes  over 
from  AC  to  DB,  and  the  end  B  is  displaced  through  another 

distance  d,  that  is,  by  2c?  in  all. 

This  result  is  of  great  use  in  applying  the  principle  of  work 
to  the  action  of  pulleys. 

In  the  case  we  have  just  considered,  if  the  pulley  is  displaced 

through  a  distance  d,  the  work  done  against  the  resistance  is  "Eid. 
The  work  done  by  the  force  applied  is  P .  2f^. 
These  are  equal. 

..    2P  =  R. 

Systems  of  Pulleys. — Movable  pulleys  may  be  combined  in  a 
Variety  of  ways  to  raise  a  weight  or  overcome  a  resistance. 
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The  accompanying  three   figures   indicate    the    three   ways 
usually  described  in  which  this  may  be  done. 

Q. 

Fig.  120.  Fig.  121. 

First,  second,  and  third  systems  of  pulleys. 

These  three  methods  of  arranging  pulleys  are  called  the  first, 
second,  and  third  systems. 

They  are  best  illustrated  by  means  of  the  figures,  but  they 
may  also  be  described  in  words  as  follows. 

First  System. — In  the  first  system  a  separate  string  passes 
round  each  pulley,  one  end  of  the  string  being  fixed  and  its 
other  end  being  attached  to  the  next  pulley,  until  we  come  to 
the  last  string,  one  end  of  this  being  fixed  and  the  force  being 
applied  at  the  other  end.  The  weight  is  attached  to  the  block  of 
the  first  or  lowest  pulley. 
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Second  System. — In  the  second  system  the  pulleys  are  fixed 
in  two  blocks,  one  block  being  fixed  and  the  other  movable ;  the 

same  string  passes  round  all  the  pulleys  ;  and  the  weight  is 
attached  to  the  lower  block. 

Third  System. — In  the  third  system  one  pulley  is  fixed  ;  one 
end  of  each  string  is  attached  to  the  weight ;  the  string  passes 
round  one  pulley  and  its  other  end  is  attached  to  the  next,  until 
we  come  to  the  last  string,  one  end  of  which  is  attached  to  the 

weight,  and  the  force  is  applied  to  its  other  end. 
It  should  be  noticed  in  the  figures  that  the  third  system  is 

just  like  the  first  turned  upside  down. 

In  any  case  the  strings  are  all  supposed  to  be  parallel  unless 
otherwise  stated. 

How  to  Work  Examples. — In  any  examples  on  the  use  of 
pulleys  it  is  advisable  to  work  from  first  principles,  and  not  to 
attempt  to  remember  any  formulae. 

To  illustrate  the  methods  in  the  cases  which  have  just  been 

mentioned,  with  the  figures  drawn,  we  will  determine  the  lela- 
tions  between  P,  the  applied  force,  and  W,  the  weight  of  the 

body  lifted,  supposing  in  every  case  that  the  pulleys  are  all 
weightless. 

Suppose  W  to  be  the  weight  and  P  the  force  applied  in  each 
case. 

(1)  Since  the  tension  throughout  a  string  is  constant,  the 
tension  in  each  part  of  the  string  to  which  the  etfort  is  applied 
is  P. 

.•.    upward  pull  on  pulley  C  is  2P. 

.'.   tension  in  each  part  of  string  passing  round  pulley  B  is  2P. 
Upward  pull  on  pulley  ̂   is  2  .  2P  =  4P. 

.".   tension  in  each  part  of  string  passing  round  pulley  A  is  4P. 
Upward  pull  on  pulley  A  is  2  .  4P  =  8P. 

..   W  =  8P. 

(2)  The  same  string  goes  round  all  the  pulleys,  and  the  tension 
in  each  part  of  it  is  P. 

Hence,  since  there  are  six  segments  of  string  going  upwards 

from  the  lower  pulley-block,  the  upward  pull  on  this  block  is  6P. 
.-.   W  =  6P. 

This  is  the  most  important  combination  of  pulleys,  and  the 

one  most  frequently  used  in  practice.     Fig.  123  shows  a  slightly 
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Fio.  123.  Fig.  124. 

Pulleys  arranged  according  to  second  system. 
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different  arrangement  of  the  pulleys,  and  Fig.  124  shows  the 

arrangement  generally  employed  in  practice.  The  principle  is 
the  same  in  both  arrangements. 

(3)  Tension  in  string  to  which  the  effort  is  applied  is  P. 

.*.    pulley  C  is  pulled  down  by  force  2P. 
.•.    tension  in  string  passing  round  pulley  B  is  2P. 

So  tension  in  string  passing  round  pulley  A  is  4P. 

/.   the  weight  is  sustained  by  the  forces  P,  2P,  4P. 
.'.   W=7P. 

Same  Results  obtained  by  Principle  of  Work.— These  results 
may  all  be  easily  obtained  by  the  principle  of  work.    For  example 
consider  the  first  case. 

Suppose  the  weight  to  be  drawn  up  through  a  distance  d. 
The  pulleys  B  and  C  must  rise  through  distances  2o?  and  4fl?, 

respectively. 
The  force  P  must  act  through  a  distance  8g?. 

Thus  the  work  done  by  the  force  is  d>dB ;  and  that  done  on 

the  weight  is  (PN 
.'.    &dP  =  dW. 

W  =  8P. 

Experiment  30. — Take  a  smooth  pulley  and  attach  a  weight  to  it. 
Pass  a  string  under  the  pulley.  Attach  one  end  of  the  string  to  a 
fixed  point  and  the  other  to  a  spring-balance. 

Lift  the  balance,  and  support  the  pulley  and  weight  so  that  the 
two  segments  of  the  string  are  both  vertical. 

Find  the  mean  force  indicated  by  the  balance  necessary  to  sustain 
the  weight. 

This  should  be  about  half  the  weight  of  the  pullej'  and  body  it 
supports. 

Experiment  31. — Combine  two  or  more  movable  pulleys  according 
to  the  first  system,  taking  care  to  have  all  the  strings  parallel. 

Raise  the  end  of  the  string  at  which  the  effort  is  applied  till  the 
weight  is  raised  through  one  inch,  or  other  suitable  distance ;  and 
notice  also  the  distance  through  which  the  effort  end  is  raised. 

From  these  observations  obtain  the  velocity  ratio. 

Compare  this  with  the  velocity  ratio  deduced  theoretically. 

Experiment  32. — Take  a  pair  of  pulley -blocks  arranged  as  in  the 
second  system.  Attach  a  weight  to  the  lower  block.  The  size  of 
this  will  depend  on  the  size  of  the  block,  the  strength  of  the  rope, 
and  the  way  the  upper  block  is  supported.    If  the  blocks  are  of  good 

I 
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size,  such  as  are  used  for  practical  purposes,  the  weight  may  be  as 
much  as  200  lbs.  or  more. 

Pull  the  rope  at  the  effort  end  till  the  weight  begins  to  rise  and 
all  the  ropes  are  tight.  Now  continue  to  further  pull  down  the  rope 
till  the  weight  rises  through  a  considerable  distance,  which  may  be 
measured  pretty  accurately,  say  2  or  3  feet,  if  the  arrangement 
allows  this  to  be  done.  Measure  this  distance,  and  measure  the 
distance  by  which  the  rope  has  been  pulled  down  at  the  effort  end. 

Thus  determine  the  velocity  ratio. 

This  should  be  a  whole  number  and  equal  to  the  number  of  seg- 
ments of  rope  connecting  the  two  blocks. 

Experiment  33. — With  the  same  arrangement  use  a  spring  balance 
to  determine  the  effort  required  to  raise  the  weight.  Thus  find  the 
mechanical  advantage. 

Find  the  efficiency  from  the  fact  that 

efficiency  =  mechanical  advantage -^  velocity  ratio. 

Questions  in  which  the  weights  of  the  pulleys  are  to  be  taken 

into  account  may  be  solved  either  by  considering  the  equilibrium 

of  the  pulleys  or  by  the  principle  of  work.  As  an  illustration 
of  each  method  consider  the  first  of  the  following  questions. 

Example. — Three  pulleys  are  arranged  according  to  the 
first  system  to  sustain  a  weight  of  1  cwt. ;  the  pulley  to 
which  the  weight  is  attached  weighs  6  lbs.,  and  the  other 
two,  in  order,  5  and  2  lbs.     Find  the  force. 

Let  2),  E,  F  be  the  fixed  ends  of  DE  F 
the  strings. 

The  rope  DB  balances  a  force  of 

118  lbs.'  weight. 
.'.    tension  in    each   part   of   this 

rope  is  59  lbs.'  weight. 
Rope  EC  balances  59  +  5,  i.e.^  64 

lbs.'  weight. 

.*.    tension  in   each   part   of   this 

rope  is  32  lbs.'  weight. 
Rope  FP  balances  32  +  2,  i.e.,  34  y\q.  126. 

lbs.'  weight. 

.-.   the  force  P  is  17  lbs.'  weight. 

y 

^ 

32 

^ 

59 

112 
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Alternative    Method. — Suppose    the    weight    to    be    raised 
through  a  distance  d. 

The  work  done  on  it  is  Wid. 

The  pulleys  A,  B,  C  are  raised  through  d^  2c?,  M. 

.' .    the  work  done  on  them  is  r/ ,  6  +  2o? .  5  +  4o? .  2. 

The  force,  P  lbs.'  weight,  acts  through  8^?. 

.'.   the  work  done  by  it  =  8c?.  P. 

.-.    8r/P  =  ̂.  112  +  rf.  6  +  2(7.  5  +  4(^.2, 
8P  =  112  +  24, 
P  =  17. 

Example. — A  pair  of  pulley-blocks  has  two  pulleys  in  each 
block.  Each  block  with  its  pulleys  weighs  20  lbs.  A 

body  weighing  200  lbs.  is  sustained  by  the  lower  block. 
The  rope  after  passing  round  all 

the  pulleys  is  carried  down  and 
attached  to  the  body.  What  is 
the  tension  in  the  rope  ? 

In  this  case  the  weight  is  sustained 

partly  by  the  lower  block  and 
partly  by  the  rope  which  comes 
from  the  upper  block  and  is 
attached  to  it,  as  shown  in  the 

figure.  So  that  there  are  5  ropes 
sustaining  the  weight  and  the 
lower  block. 

Thus  if  T  lbs.'  weight  is  the  tension 
throughout  the  rope, 

5T  =  200  +  20, 

T  =  44. 

The  required  tension  is  44  Ibs.' 
weight. 

The  Differential  Pulley. — This  apparatus  is  very  frequently 
employed  to  lift  heavy  weights. 

Two  pulleys  of  different  diameters  are  rigidly  fastened  to- 
gether and  turn  on  the  same  axis  at  A. 

At  ̂   is  a  single  movable  pulley  attached  to  the  weight. 

Fig.  126. 
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An  endless  chain  passes  ovei-  the  two  wheels  at  A  and  under 
the  pulley  B,  and  has  a  part  hanging  loose,  as  shown  in  the 
figure. 

The  wheels  at  A  are  not  provided  with 

smooth  grooves ;  but  the  grooves  are  made 
to  fit  the  chain  so  that  the  chain  cannot 

slip  in  them.  This  may  be  done  by  having 

projections  on  the  rim  to  work  in  the  links 

as  with  ordinary  bicycle  chain-wheels. 
But  more  often  the  links  fit  into  depres- 

sions cut  in  the  groove  to  receive  them. 

Suppose  that  a  and  b  are  the  radii  of 
the  larger  and  smaller  wheels  at  A.  Let 
an  effort  P,  acting  as  shown  in  the  figure, 

be  required  to  sustain  a  weight  W. 

We  shall  suppose  that  the  two  parts  of 
the  chain  passing  under  B  are  practically 

parallel.  Then  the  tension  in  each  of  these 
.    W 

The  double  pulley  A  is  in  equilibrium 

under   the   action  of   the  three  foi'ces  P, 
W  W 

2'  2' Thus,  by  moments  about  its  axis,  we  have 

Differential 

p 
a4 W 

2  •
 

-¥• a. 

•'• P 

.2a-- w 

p' 

=  W(«.- 2a 
~a-h' 

■b) 

Experiment  34.— Carry  a  heavy  weight  by  means  of  a  differential 
pulley.  Draw  down  the  chain  by  a  considerable  amount  measuring 
the  distance  through  which  the  effort  acts.  This  may  be  done  by 
measuring  with  a  2-foot  rule  as  the  chain  comes  down,  or  by  having 
the  whole  endless  chain  marked  off  in  known  lengths  all  the  way 
round  and  counting  these  as  they  pass  down.  Measure  the  distance 
by  which  the  weight  rises.     Thus  calculate  the  velocity  ratio. 

With  a  spring  balance,  or  hy  means  of  weights,  attached  to  the 
chain,  measure  the  effort.  Thus,  find  the  mechanical  advantage  and 
the  velocity  ratio. 
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Exercises  X.  a. 

L  In  the  first  system,  if  there  are  four  pulleys  what  force  is 
required  to  raise  a  hundredweight  ? 

2.  In  the  first  system,  if  there  are  four  pulleys  what  weight  can 

be  raised  by  a  force  of  20  lbs. '  weight  ? 
3.  With  6  movable  pulleys  arranged  according  to  the  first  system, 

what  is  the  ratio  of  the  force  applied  to  the  weight  of  the  body 
sustained  ? 

4.  With  the  first  system  of  pulleys  a  force  of  2  lbs.'  weight  is 
observed  to  balance  a  weight  of  64  lbs.  How  many  movable  pulleys 
arie  there? 

5.  What  is  the  smallest  number  of  movable  pulleys  that  must  be 

arranged  in  the  first  system  to  enable  a  force  of  10  lbs. '  weight  to 
raise  a  hundredweight  ?  And  what  is  the  greatest  weight  that  the 
given  force  could  then  sustain  ? 

6.  With  the  second  system,  if  there  are  3  pulleys  in  each  block, 
find  the  force  required  to  raise  2  cwts. 

7.  With  the  second  system,  if  there  are  3  pulleys  in  the  upper 
and  2  in  the  lower  block  draw  the  arrangement  and  find  the  force 
required  to  raise  100  lbs. 

8.  With  the  second  system  there  are  2  pulleys  in  the  upper  and 
one  in  the  lower  block,  the  lower  block  weighing  2  lbs.  What  force 
is  required  to  raise  a  body  weighing  50  lbs.  ?  And  what  downward 
pull  has  the  upper  block  to  sustain  ? 

9.  If  there  are  seven  segments  of  string  between  the  pulley  blocks, 

what  weight  can  a  force  of  4  grams'  weight  sustain.  Show  the 
arrangement  in  a  diagram. 

10.  Two  pulley  blocks  each  having  two  pulleys  are  arranged  so 
that  the  applied  force  acts  vertically  upwards.  Draw  a  figure  of  the 
arrangement.  Neglecting  the  weights  of  the  blocks  and  pulleys, 
show  that  the  force  required  to  sustain  a  body  is  yth  of  the  weight 

of  the  body,  and  the  pull  on  the  upper  block  l^ths  of  the  weight. 
11.  Four  movable  pulleys  are  arranged  so  that  a  separate  rope 

passes  round  each  one,  and  each  rope  has  one  end  attached  to  a 
fixed  point.  All  the  ropes  are  vertical  and  the  pulleys  weightless. 
What  force  in  the  last  rope  will  support  a  weight  of  100  lbs. 
attached  to  the  lowest  pulley  ? 

12.  Two  pulleys,  each  weighing  10  lbs,,  are  arranged  according  to 
the  first  system  to  support  a  weight  of  400  lbs.  What  force  is 
required  ? 

13.  A  body  is  raised  by  means  of  a  system  of  pulleys  arranged 
(a)  according  to  the  first  system,  (6)  according  to  the  third  system, 
no  fixed  pulley  being  used  in  either  case.  Show  that  the  pull  on 
the  fixed  beam  or  support  is  greater  in  the  second  than  in  the  first 
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case  by  the  sum  of  the  forces  required  to  be  applied  in  the  two 
cases. 

14.  A  body  of  weight  Wi  is  attached  to  a  pulley  of  weight  W^- 
The  pulley  is  carried  by  a  rope  of  which  one  end  is  fixed,  and  the 
other  end,  to  which  the  force  is  applied,  is  at  a  height  I  above 
the  pulley.  The  rope  weighs  lo  units  per  unit  of  length.  Show 
that  the  work  done  in  raising  the  body  by  a  height  h  is 

h{W^+W^  +  iv{2l  +  h)}. 

15.  What  force  is  required  to  raise  a  block  of  stone  weighing 
280  lbs.  with  a  pair  of  pulley  blocks,  each  having  three  pulleys  ? 

16.  What  is  the  greatest  weight  that  can  be  lifted  by  a  force  of 

40  lbs.'  wt,  with  two  pulley  blocks,  the  upper  one  having  3  pulleys 
and  the  lower  one  having  2  pulleys,  and  weighing  10  lbs.  ? 

17.  Find  the  greatest  weight  that  a  man  can  lift,  by  standing  on 
the  floor  and  pulling  downwards,  with  the  help  of  a  pair  of  pulley 
blocks,  each  having  four  pulleys,  if  the  man  weighs  150  lbs. 

18.  If  the  two  parts  of  the  rope  supporting  a  weight  by  means  of 
a  perfectly  frictionless  pulley  are  not  parallel,  show  that  they  must 
be  equally  inclined  to  the  vertical. 

19.  One  end  of  a  string  is  attached  to  a  fixed  point  and  it  passes 
under  a  smooth  movable  pulley  and  over  a  fixed  one  distant  10  feet 
horizontally  from  the  fixed  point.  A  weight  of  10  lbs.  is  attached 
to  the  movable  pulley ;  and  this  is  allowed  to  hang  12  feet  below 
the  horizontal  line  through  the  fixed  point  and  the  fixed  pulley. 
Find  the  tension  in  the  string. 

20.  If  by  using  a  pair  of  pulley  blocks,  each  weighing  16  lbs.,  a 

weight  of  1  cwt.  can  be  supported  by  a  pull  of  16  lbs.'  wt.,  how 
many  pulleys  are  there  in  each  block  ? 

21.  In  an  arrangement  of  four  pulleys,  according  to  the  first 

system,  a  pull  of  14  lbs.'  wt.  sustains  a  weight  of  176  lbs.  The 
masses  of  the  1st,  3rd,  and  4th  pulleys,  counting  from  the  one 
attached  to  the  weight,  are  4,  3,  3  lbs.  What  is  the  mass  of 
the  2nd  ? 

22.  Each  of  the  four  movable  pulleys  in  the  third  system  has  the 

same  weight ;  and  a  force  of  4  lbs. '  wt.  is  required  to  sustain  a  body 
weighing  202  lbs.     What  is  the  weight  of  each  pulley  ? 

23.  In  a  differential  pulley  the  radii  of  the  two  wheels  are  6  and 
8  inches.     Show  that  the  velocity-ratio  is  8. 

24.  If  in  a  differential  pulley  the  radii  of  the  wheels  are  9  and 

10  inches,  and  to  raise  a  body  weighing  200  lbs.  a  force  of  15  lbs.' wt.  must  be  used  ;  what  fraction  of  the  work  done  is  utilized  in 
raising  the  weight  ? 

25.  If  with  any  arrangement  of  pulleys  a  force  of  10  lbs.'  wt. 
acting  through  17  feet  raises  130  lbs.  through  6  inches,  what  is  the 
efficiency  of  the  system  ? 
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26.  With  six  pulleys  arranged  in  two  blocks,  so  that  a  single  rope 

is  used,  it  is  found  that  a  force  of  14  lbs.'  wt.  is  necessary  to  raise 
160  lbs.     What  is  the  efficiency  of  the  machine  ? 

27.  A  pair  of  pulley  blocks  is  working  with  an  efficiency  of  "4 ; 
and  it  is  found  that  120  grams'  wt.  is  required  to  raise  4*8  kilos. 
How  many  sections  of  string  are  there  between  the  blocks  ? 

The  Wheel  and  Axle  is  a  machine  consisting  of  a  wheel 

firmly  attached  to  a  cylindrical  axle,  the  two  rotating  about  a 
common  axis  which  is  fixed  in  position. 

To  use  the  machine,  a  string  passes  round  the  wheel  and 
another  round  the  axle.  A  force  applied  to  the  string  which 

passes  round  the  wheel  can  in  general  overcome  a  much  larger 

force  acting  at  the  sti'ing  which  passes  round  the  axle. 
Fig.  128  gives  a  general 

view  of  the  arrangement, 

and  Fig.  129  is  a  diagram 
of  it. 

Let    the    radii    of    the 
wheel  and  axle  be  a  and  h. 

Suppose  a  force  P  ap- 
plied to  the  wheel  sustains 

a  weight  W  by  means  of 

the  string  passing  round 
the  axle. 

Since  these  are  in  equilibrium,  and  the  apparatus  is  capable  of 
turning  round  the  axis,  the  moments  of  P  and  W  about  the 
axis  must  be  equal. 

Thus,  P.a=W.6, 

P=F 
By  the  principle  of  work  : 

In  a  single  turn  the  work  done  by  P  is  27raP,  and  that  done 
against  W  is  27r6W. 

And  these  are  equal.     So  that 

aP  =  6W. 

Sometimes  a  rope  or  string  is  passed  round  the  wheel,  touch- 

FiQ.  128.  Fig.  129. 

Wheel  and  Axle. 
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Fig  130. 
and  axle ;  wheel  pulled 
by  two  segments  of rope. 

ing  it  along  a  portion  of  its  circumference,  different  forces  being 
applied  to  the  two  parts  of  the  string.  In  tliis  case  the  friction 

between  the  rope  and  the  wheel  prevents  the  rope  from  slipping, 
although  the  forces  in  the  two  parts  of  it  are  unequal. 

Let  T,  T'  be  the  tensions  in  the  two  parts  of  the  rope  passing 
round  the  wheel,  T  being  the  greater,  the 
other  symbols  having  the  same  meanings  as 
before. 

Then,  by  taking  moments  about  the  axis, 
we  get 

a{T-T)=bW. 
The  same  result  would  be  got  by  con- 

sidering that  the  work  done  by  T  in  any 

motion,  for  instance,  one  complete  turn,  is 

equal  to  that  done  against  T'  and  W. 
Thus  27raT  =  27raT  +  27r6W. 

.-.    a{T-T)^bW. 
It  should  be  noticed  carefully  that  the  friction  which  we  have 

supposed  to  exist  in  this  case,  and  which  keeps  the  rope  from 

slipping  on  the  wheel,  has  no  effect  on  the  efficiency  of  the 
machine,  because  the  force  applied  to  the  machine,  and  which 

we  may  regard  as  equal  to  T  -  T',  does  no  work  against  this 
friction.  Work  is  only  done  against  friction  when  one  rough 

body  is  dragged  over  the  surface  of  another  against  the  resisting 
action  of  the  friction  force.  Work  would  only  be  done  against 
the  friction  in  this  case  if 

the  rope  were  to  slip  on  the 
wheel,  in  which  case  the 
wheel  would,  as  a  rule,  not 

rotate  at  all,  and  no  tcsefid 
work  would  be  done. 

The  Windlass.  —  The 
principle  of  the  windlass  is 
similar  to  that  of  the  wheel 

and  axle.  A  rope  or  chain 
BQ  is  wound  round  a  drum 

CO,  and  this  is  turned  by 
means  of  a  handle,  or  some- 

times  a  series   of  handles  or  spokes,   as  shown  in  the  figure. 

Fig.  131.— Windlass. 
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Thus,  a  weight  at  the  end  Q  may  be  raised  or  other  resistance 

may  be  overcome. 

The  relation  between  the  forces  may  be  easily  obtained,  as  in 
the  case  of  the  wheel  and  axle. 

Fia.  132.— Derrick. 

The  Derrick.— Fig.  132  shows  the  arrangement  known  as 
the  derrick,  used  for  raising  heavy  bodies.  It  consists  of  a 

windlass  and  a  fixed  pulley  supported  by  a  tripod. 
Differential  or  Chinese  Windlass. — In  this  the  drum  con- 

sists of  two  cylindrical  parts,  B^  (7,  of  different  radii.  The 

weight  is  attached  to  a  pulley  A.  The  rope  &8  passes  under 
this  pulley  from  one  side  of  the  drum  to  the  other.  To  raise 

the  weight  the  drum  is  turned  so  that  the  rope  is  unwound  from 
the  smaller  part  of  the  drum  and  wound  on  the  larger  part. 

Suppose  the  length  of  the  arm,  or  crank,  to  which  either  of 
the  handles  D  is  attached,  to  be  a,  and  the  radii  of  the  cylinders 
B  and  (7  to  be  6  and  c. 
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Fig.  133.— Differential  windlass. 

Suppose  an  effort  P  applied  to  the  handle  to  sustain  a  weight 

W.     Then  the  tension  in  the  rope  is 

about  the  axis  of  the  drum, 

W 

W 
And  by  moments 

Fa 
W 
P 

2a 

Experiment  35. — A  wheel-and-axle  is  easily  made  by  attaching  a 
disc  of  wood  to  a  cylinder  of  much  smaller  radius,  or  else  by  turning 
the  whole  in  one  solid  piece.  The  first  plan  is  simpler.  A  wheel  of 
about  8  inches  diameter  and  an  axle  of  1  inch  diameter  and  3  inches 
long  will  do  very  well.  The  wheel  should  be  screwed  firmly  on  the 
end  of  the  axle  with  three  or  four-  screws,  none  of  which  passes 
through  the  centre.  Two  wire  nails  or  screws  may  then  be  fixed  at 
the  centre  of  the  wheel  and  at  the  other  end  of  the  axle  to  form  an 
axis  of  rotation,  and  the  arrangement  set  so  that  it  can  turn  on  two 
upright  supports. 

Fasten  strings  to  the  wheel  and  the  axle,  and  wind  them  round  in 
opposite  ways. 

First  find  the  velocity  ratio  by  finding  how  far  the  wheel  string 
must  be  pulled  down  to  raise  a  point  of  the  axle  string  by  a  certain 
amount,  say  2  or  3  inches. 
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Attach  a  weight  to  the  axle  string,  and  find  what  weight  attached 
to  the  wheel  string  is  just  sufficient  to  raise  the  first.  Thus  deter- 

mine the  mechanical  advantage. 
Calculate  the  efficiency. 

Example. — A  wheel  is  turned  by  means  of  a  band  passing 
round  it,  and  kept  from  slipping  by  friction,  the  tensions 

in  the  two  parts  of  the  band  being  10  and  40  kilos.'  wt. 
The  radius  of  the  wheel  is  2  metres.  The  machine  is  used 

to  raise  a  load  of  270  kilos.  It  is  working  at  an  efficiency 

of  '86.  (a)  What  is  the  radius  of  the  drum  by  which  the 
load  is  raised  ?  (b)  In  how  many  turns  is  the  load  raised 

through  20  metres  ? 

(a)  Let  ic  metres  be  the  required  radius.     The  force  that 

would  be  necessary  to  raise  the  load  if  the  efficiency  were 

1  would  be  -85  .  30  kilos.'  wt. 

.-.    -85.  30.  2  =  270.  .^7. 1-7       ,A 

^=^  =  •18. 
Radius  of  drum  ̂   '18  metre. 

[The  second  part  of  the  question  may  be  easily  solved  by 
means  of  the  value  of  the  radius  which  we  have  just  found.     Or 

it  may  be  solved  independently  as  we  shall  show.] 

Suppose  n  is  the  required  number  of  turns. 

The  work  done  in  n  turns  by  the  force  30  kilos.'  weight  is, 
since  the  circumference  of  the  wheel  is  ̂ ^ .  2  metres, 

71 .  30  .  -*Y*  .  2  kilogram-metres. 

.'.    useful  work  obtained  is 

•85  .  71 .  30  .  4=4. .  2  kilogram-metres. 
And  work  done  in  raising  270  kilos,  through  20  metres  is 

270 .  20  kilogram-metres. 

.-.    -85  .  7i .  30  .  V- .  2  =  270  .  20. 
9.10.7     i«o     v     4. 

^=  .Qg    A  A  =16  8  about. o5 .  44 
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Exercises  X.  b. 
L  With  the  wheel  and  axle,  if  the  diameter  of  the  wheel  is  2 

feet  and  that  of  the  axle  4  inches,  what  force  is  required  to  raise 
150  lbs.? 

2.  A  cylindrical  drum  is  used  to  draw  up  a  bucket  of  water 
weighing  60  lbs.  It  is  turned  by  a  handle  at  the  end  of  an  arm  15 

inches  long.  If  a  force  of  20  lbs.'  wt.  is  to  be  applied  to  the  handle, what  must  be  the  diameter  of  the  drum  ? 

3.  What  must  be  the  radius  of  the  wheel  if  a  force  of  7  lbs.'  wt.  is 
employed  to  draw  up  a  hundredweight  with  an  axle  of  \^  inch 
radius? 

4.  If  the  radius  of  the  wheel  is  3  feet,  and  the  force  applied  is  12 

lbs.'  wt.,  how  much  work  is  done  in  tw-o  complete  turns? 
5.  What  work  is  done  in  each  turn  when  the  axle  is  2  inches  in 

diameter  and  the  load  raised  is  40  lbs.? 

6.  The  radii  of  a  wheel  and  axle  are  5'  and  6".  Some  of  the  work 
is  lost  in  friction.  If  a  force  of  125  lbs.'  wt.  is  required  to  overcome 
a  resistance  of  half  a  ton's  wt.,  what  is  the  efficiency  of  the  machine  ? 

7.  A  wheel  and  axle  is  working  at  an  efficiency  of  g.  The  radius 

of  the  wheel  is  1  2  metres,  and  a  force  of  7  kilograms'  wt.  is  acting. 
How  high  is  a  load  of  120  kilos,  raised  in  6  complete  turns  ? 

8.  The  efficiency  of  a  wheel  and  axle  is  '95.  The  radius  of  the 
wheel  is  10  inches.  If  a  force  of  2  lbs.'  wt.  is  used  to  raise  a  load  of 
10  lbs.,  what  is  the  radius  of  the  axle ? 

9.  Show  by  a  sketch  a  system  of  two  pulleys,  one  fixed  and  one 
movable,  one  end  of  the  cord  being  fastened  to  a  fixed  point  in  the 
beam  which  supports  the  machine. 

If  the  angle  between  the  parts  of  the  cord,  which  supports  the 

movable  pulley,  be  60°,  find  the  power  necessary  to  support  a  weight of  1,732  lbs.     (Science  and  Art,  1899.) 

The  Screw. — The  screw  cannot  be  adequately  described  in  a 

book.  By  observing  any  screw,  such  as  one  that  is  used  by  wood- 
workers, it  will  be  seen  that  it  consists  of  a  cylinder,  round  which 

winds  a  spiral  protuberance,  or  thread,  the  turns  of  which  are  uni- 
forndy  spaced  out  from  each  other,  and  which  intersects  all 
straight  lines  that  can  be  drawn  on  the  surface  of  the  cylinder, 

parallel  to  its  axis,  at  a  constant  angle. 
A  screw  used  as  a  mechanical  appliance  is  furnished  with  a 

bearing  or  block  pierced  with  a  hole  having  an  inner  thread  into 
which  the  screw  exactly  fits.  The  block  is  fixed,  and  the  threads 
on  the  screw  and  the  block  prevent  the  screw  from  moving  bodily 

through  the  block  without  rotation.     And,  again,  on  the  other 
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hand,  if  the  screw  is  rotated  in  the  block  the  action  of  the  threads 

is  such  as  to  compel  it  to  move  along  in  the  direction  of  its  length, 

as  when  a  screw  is  turned  in  wood  by  means  of  a  screw-driver, 
or  a  cork-screw  is  driven  into  or  drawn  out  of  a  cork. 

Screw  Jack. — The  simplest  case  of  a  screw  used  as  a  machine  is 
the  screw-jack,  which  is  employed 
for  raising  heavy  weights.  As 

shown  in  the  figure,  the  screw  is 
vertical  and  works  in  a  block  which 
remains  fixed  and  is  carried  on  a 

tripod  stand.  The  screw  presses 

upward  against  the  body  to  be 
lifted,  and  is  turned  by  means  of  a 
horizontal  rod  or  handle  :  this  causes 
the  screw  to  rise  and  so  to  raise  the 
body. 

If  the  screw  is  turned  so  as  to 

make  it  rise,  and  is  rotated  by  just 

one  complete  turn,  it  rises  through 
a  distance  equal  to  the  distance 
between  two  consecutive  turns  of 

its  thread,  measured  in  a  direction 

parallel  to  its  axis.  Each  time  that 
the  handle,  or  arm,  by  which  it  is  turned,  comes  back  so  as 

to  be  over  and  parallel  to  its  original  position,  the  screw  has 
travelled  along  in  the  block  by  this  distance. 

The  pitch,  of  a  screw  is  the  distance  between  two  consecutive 

turns  of  the  thread  measured  parallel  to  the  axis  of  the  screw. 
In  the  case  of  the  screw,  friction  is  very  considerable.  Of  the 

force  applied  to  the  arm  to  rotate  the  screw  and  raise  a  weight, 

or  overcome  any  other  resistance,  more  than  half,  as  a  rule,  is  ex- 
pended in  overcoming  the  friction  of  the  thread.  That  is,  the 

force  is  more  than  twice  as  great  as  would  be  necessary  if  friction 
could  be  entirely  eliminated.  It  should  be  noticed  that  here,  as 

in  all  cases,  the  friction  acts  so  as  to  oppose  the  motion.  To  move 
the  screw  against  a  resistance,  the  friction  makes  a  much  larger 

effort  necessary ;  but  if  it  is  simply  desired  to  hold  the  screw  still 
against  the  action  of  a  resistance  the  applied  force  may  be  made 
much  smaller  than  would  be  necessary  without  friction.     Indeed, 

Fig.  1.34.— Screw-jack. 
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in  the  case  of  the  screw,  the  applied  force  could  generally  be  en- 
tirely removed,  the  friction  being  sufficient  to  hold  the  screw  at 

rest  against  the  action  of  the  force  acting  along  the  axis. 

Work  done  by  the  force  applied  to  the  Arm. — Suppose  a 
force  P  to  be  applied  to  the  end  of  the  arm,  the  arm  being  of 
length  a.  {a  is  taken  to  be  the  perpendicular  distance  from  the 
point  of  application  of  the  force  to  the  axis  of  the  screw.)  And 

suppose  that  P  acts  in  a  direction  at  right  angles  to  both  the  arm 
and  the  axis,  or  in  other  words  P  is  at  right  angles  to  the  arm 

and  is  in  a  plane  containing  the  arm  and  at  right  angles  to  the 
axis. 

Now,  as  the  screw  makes  one  complete  turn,  if  it  did  not  travel 

along  its  axis  the  point  of  application  of  P  would  describe  a  circle 

of  radius  a,  and  circumfei'ence  Sttct,  and  return  to  its  old  position. 
But,  because  the  screw  travels  along  its  axis,  the  end  of  the  arm 
really  describes  a  helical  curve,  or  the  curve  of  a  screw  thread, 

which,  for  a  single  turn,  is  a  little  longer  than  27r«. 
The  projection  of  this  curve  on  the  plane  at  right  angles  to 

the  axis  in  which  P  acts  is  the  circle  27ra  ;  and  it  is  this  projection 
along  which  P  acts  throughout  the  motion  ;  hence,  the  length  of 
the  circumference  of  this  circle  is  the  amount  of  displacement  of 

P's  point  of  application  measured  in  the  direction  in  which  P  acts. 
Therefore  the  work  done  by  P  in  one  turn  is  27raP. 

Screw  without  Friction. — Imagine  that  we  have  an  ideal 
screw  in  which  there  is  no  friction  ;  and  consider  the  relation 

that  must  exist  in  this  case  between  the  force  applied  and 
the  resistance  for  equilibrium. 

Let  the  pitch  of  the  screw  be  d  ;  the  length  of  the  arm  a. 

Suppose  the  screw  is  employed  to  raise  a  body  of  weight  W. 
Let  a  force  P  be  applied  to  the  arm  in  a  direction  at  right 

angles  to  the  arm  and  the  axis  of  the  screw. 

The  required  relation  is  most  readily  found  by  the  principle  of 
work. 

In  a  complete  turn,  the  work  done  by  P  is  27r«P  ; 

The  work  done  against  W  is  <iW. 

.-.    27raP=c/W. 

W_2^a 

P"   d' 
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Experiment  36. — A  useful  form  of  screw  for  experiments  is  one 
which  works  vertically  up  and  down  in  its  fixed  bearing,  and 
carries,  firmly  fixed  to  its  upper  end,  a  wheel  whose  axis  coincides 
with  that  of  the  screw.  A  weight  to  be  raised  may  be  placed  on 
the  wheel,  and  the  wheel  and  screw  may  be  rotated  by  a  string 
passing  round  the  edge  of  the  wheel.  With  this  apparatus  the  arm 
at  which  the  effort  acts  is  always  the  same,  being  equal  to  the 
radius  of  the  wheel. 

If  this  apparatus  is  not  available  a  screw  working  vertically  may 
be  used  with  a  horizontal  arm.  A  weight  to  be  raised  can  be  tied 
on  to  the  lower  end  of  the  screw. 

Measure  the  pitch  of  the  screw  d,  and  the  length  of  the  arm  at 
which  the  effort  acts  a ;  that  is,  the  distance  from  the  axis  of  the 
screw  to  the  point  at  which  the  pull  is  applied. 

The  velocity-ratio  is d 

Observe  what  pull  is  necessary  to  just  cause  the  weight  to  rise. 
Calculate  the  mechanical  advantage  and  the  efficiency. 
If  the  screw  is  a  strong   one   and  firmly  fixed,   a   considera])le 

weight  should  be  used. 
Also  find  the  efficiencies  for  various  loads. 

Toothed  Wheels. — The  Toothed  Wheel  which  is  frequently 
employed  in  mechanical 

appliances  may  be  re- 
garded as  a  modification 

of  the  wheel  and  axle. 

Suppose  two  wheels,  each 
furnished  with  a  series 

of  uniform  teeth  round 

the  rim,  to  rotate  on  par- 
allel axes  and  to  be  so 

placed  that  neither  can 
rotate  without  the  other. 

Then,  by  the  applica- 
tion of  a  force  P  tending 

to    rotate     one     of     the 

wheels,   a   resistance   W  tending  to  rotate  the   other  can   be 
overcome. 

Let  J ,  J5  be  the  centres  of  the  two  toothed  wheels. 
Let  the  forces  P  and  W  act  at  distances  a  and  h  from  the  axes 

of  the  wheels. 

Q 
Fig.  135.— Toothed  wheels. 
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Let  A'  be  the  point  at  which  two  teeth  are  in  contact  :  And 
suppose  that  AX=a\  BX=h'. 

Suppose  that  Q  is  the  mutual  action  between  the  wheels  at  X ; 
so  that  the  wheel  A  presses  the  wheel  B  upwards  at  X  with  a 

force  Q,  and  the  wheel  B  presses  the  wheel  A  downwards  at  A' 
with  a  force  Q,  Q  being  at  right  angles  to  the  line  A  B. 

Then  by  considering  the  equilibrium  of  the  wheels  we  easily 

get: 

P«  =  Q«', 

Vfh-- 

=Qb\ 

Wb 

Pa 

b' 

W aV 

a'b' 

In  the  actual  working  of  the  wheels,  when  continuous  motion 

takes  place,  the  distances  AX,  BX  will  vary  a  little  and  the  lines 
of  application  of  the  reaction  Q  will  not  always  be  at  right 

angles  to  AB.  But  we  may  suppose  that  a',  b'  are  the  distances 
from  the  centres  to  the  mean  positions  of  the  points  of  contact 
and  that  the  mean  position  of  Q  is  at  right  angles  to  AB. 

Principle  of  Work  applied  to  Toothed  Wheels.— This  is 
a  question  in  which  the  principle  of  woik  may  be  advantageously 
employed.  It  will  be  noticed  that  in  using  this  principle  we  do 
not  have  to  take  into  account  the  intermediate  force  Q. 

We  shall  suppose  that  as  the  wheels  rotate  and  the  point  of 
contact  between  two  teeth  changes  in  position  the  ratio  of  P  to 

W  remains  practically  constant.  This  can  be  managed  with  well- 
cut  wheels. 

Suppose  that  there  are  m  teeth  on  the  wheel  A  and  n  teeth 
on  the  wheel  B. 

While  A  rotates  once  m  teeth  of  B  cross  the  line  AB.     Thus 

B  performs  —  of  a  complete  turn. n 

P   then   acts   through   a   distance  27ra,  and  W   is  overcome 

through  - .  27r6. n 
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Thus,  equating  the  work  done  by  P  to  that  done  against  W, 
we  get 

P.27ra  =  W.'^.27r6. n 

W_w     a 

P  ~m  '  h' 
These  formulae  forW/P  are  worked  out  as  examples  of  the 

way  in  which  questions  of  this  sort  should  be  solved. 
m  and  n  are  proportional  to  the  circumference  of  the  wheels 

and  therefore  to  their  radii  a',  h'.  Thus,  we  get  the  same  result 
as  before. 

It  would  be  possible  to  have  mjn  different  from  a'jh',  which 
would  seem  to  give  a  different  result.  But  in  such  a  case  the 
wheels  would  not  work  well,  and  there  would  be  no  constant  ratio 

between  P  and  W.  Suppose  for  instance  the  intervals  between 

the  teeth  of  A  are  considerably  greater  than  those  between  the 

teeth  of  B.  Then  the  rotation  takes  place  with  jerks,  and  as  a 
tooth  of  A  leaves  one  of  B,  before  the  next  contact  is  made,  A 

rotates  by  a  'small  amount  against  no  resistance,  so  that  no 
force  is  then  necessary  to  turn  it. 

The  Winch. — This  is  a  machine  which  is  used  for  raising 
heavy  weights  or  overcoming  great  resistances  by  means  of  a 

strong  rope  or  chain. 
The  figure  shows  a  winch  which  is  worked  by  means  of  two 

handles  F,  F' .  These  turn  a  small  toothed  wheel,  which  works  a 
much  larger  one  HH.  This  is  attached  to  a  cylindrical  barrel  />, 
which  turns  with  it  and  on  which  the  rope  is  coiled. 

Winches  are  also  made  with  more  than  one  pair  of  toothed 

wheels,  that  shown  in  the  figure  being  a  simple  form. 

It  is  clear  that  the  mechanical  advantage  of  the  winch,  sup- 
posing friction  to  be  absent,  will  be  found  in  just  the  same 

manner  as  has  been  done  for  a  pair  of  toothed  wheels. 
The  winch  is  an  example  of  the  way  in  which  toothed  wheels 

are  employed  to  obtain  a  much  greater  force  than  that  which 

is  applied. 

In  clock-  and  watch-work  trains,  series  of  toothed  wheels  are 
employed  to  obtain  a  force  much  less  than  the  force  applied,  but, 
at  the  same  time,  to  obtain  considerably  increased  motion  ;   for 
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Fig.  136. -Winch. 

the  final  wheel  of  the  train  rotates  much  more  rapidly  than  the 

one  to  which  the  spring  or  weight  is  immediately  applied. 

Example. — A  winch  is  turned  by  a  handle  whose  arm  is 
16  ins.  long.  This  is  attached  to  a  wheel  with  10  teeth, 
which  works  a  wheel  with  40  teeth.  This  wheel  is 

attached  to  the  barrel  which  is  4  ins.  in  diameter.  The 

efficiency  of  the  winch  is  70  per  cent.  Find  the  force 

necessary  to  raise  a  weight  of  half  a  ton. 

The  force  that  would  be  required  if  no  work  were  lost  is 

1120  X  ̂g  X  T^  lbs.'  weight  =  35  lbs.'  weight. 

But,  since  only  70  per  cent,  of  the  work  done  is  utilized, 
the  force  required  is 

J^x35  lbs.'  weight =50  lbs.'  weight. 
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Summary. 

Pulleys.  —A  fixed  pulley  is  used  merely  to  alter  the  direction  and 
not  the  magnitude  of  a  force. 
With  a  single  movable  pulley,  which  is  light  and  smooth,  the 

effort  is  equal  to  half  the  resistance  or  weight. 
Sets  of  movable  pulleys  may  be  grouped  up  in  various  ways. 

Any  simple  combination  in  which  all  the  segments  of  string  or  rope 
are  parallel  may  be  treated  by  simple  applications  of  the  theory  of 
parallel  forces. 

Questions  on  such  combinations  may  also  be  solved  by  the  principle 
of  work. 

The  combination  most  commonly  used  in  practice  is  that  con- 
sisting of  two  pulley-blocks,  each  having  several  pulleys,  witli  a 

continuous  rope  passing  round  all  the  pulleys. 
In  the  differential  pulley  an  endless  chain  passes  over  two  wheels 

rigidly  connected  with  each  other  and  carried  in  a  fixed  block  and 
under  a  movable  pulley  to  which  the  weight  is  attached. 

With  the  Wheel  and  Axle  the  relation  between  the  forces  may,  in 
any  case,  be  easily  obtained  either  by  taking  moments  about  the 
axis  about  which  the  arrangement  turns  or  by  the  principle  of  work. 

In  the  case  of  the  Screw,  friction  is  of  very  great  importance. 
The  effort  for  a  given  resistance  is  very  much  greater,  as  a  rule,  than 
it  would  be  if  there  were  no  friction. 

On  the  supposition  that  there  is  no  friction,  the  relation  between 
effort  and  resistance  is  easily  found  by  the  principle  of  work,  con- 

sidering a  single  turn  of  the  screw. 
For  two  Toothed  Wheels  gearing  into  each  other  and  fitting  well 

the  relation  between  effort  and  resistance,  or  between  two  forces 
tending  to  turn  them  about  their  axles,  supposing  that  there  is  no 
friction,  is  obtained  either  by  the  principle  of  moments  or  by  that 
of  work. 

Tooth  wheels  are  applied  in  practice  in  winches  and  in  clock-  and 
watch-work  trains. 



CHAPTER   XL 

THE   BALANCE.     STEELYARDS. 

The  Balance. — A  Balance  is  an  apparatus  for  determining 
the  mass  of  a  body. 

The  mass  is  determined  by  comparing  it  with  the  masses  of 

bodies  of  definite  known  masses,  for  instance,  pounds  and  ounces, 
or  grams  and  fractions  of  a  gram. 

These  standard  bodies  of  definite  masses  are  called  weights-, 
and  the  operation  of  comparing  a  body  of  unknown  mass  with 
them  is  called  toeighing. 

The  balance  really  determines  in  the  first  place  which  of  the 

weights  have  the  same  weight  as  the  given  body.*  Hence  we 
infer  that  these  weights  have  also  the  same  mass  as  the  given 
body  ;  and  thus  we  know  the  mass  of  the  ])ody. 

Principle  of  the  Balance. — In  its  very  simplest  form  we  may 
say  that  a  balance  is  a  straight  uniform  rod  ACB,  balancing 
about  its  middle  point  (7,  on  a  fixed  fulcrum  or  support. 

If  two  bodies  of  equal  masses  are  hung  on  at  A  and  B, 
the  equilibrium  of  the  balance  will  not  be  disturbed,  the 

moments  of  the  weights  of  these  bodies  about  C  being  equal 
in  magnitude. 

And,  if  two  bodies  are  hung  on  at  A  and  B^  and  we  find  that 
the  rod  continues  to  balance  about  C ;  then,  since  the  moments 

of  the  weights  of  these  bodies  about  C  must  be  equal,  we  infer 
that  the  weights,  and  therefore  that  the  masses,  of  the  bodies 
are  equal. 

*  Note  the  two  uses  of  the  word  weight  in  this  sentence.     It  means 
(a)  A  bofly  of  definite  mass  and  weight  used  for  weighing ; 
(6)  The  force  of  attraction  of  the  earth  on  a  body. 
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Description  of  a  Balance. — A  delicate  balance,  used  for  very 
accurate  weighing,  has  the  following  arrangements.     AB,  which 

Fig.  13Ca.— a  simple  balance. 

is  called  the  beam,  turns  about  a  central  support  with  as  little 

friction  as  possible.  This  is  accomplished  by  having  an  edge 
of  hardened  steel  attached  to  the  beam  at  right  angles  to  it 

and  tui'ned  downwai'ds,  and  resting  on  a  horizontal  surface 
of  very  hard  material,  such  as  agate.  This  edge  is  called  a 
knife  edge. 

Fig.  1366.— a  delicate  balance. 

Two  receptacles  for  the  body  and  the  weights,  called  scale- 
paTis^  are  hung  on  the  beam  at  A  and  B,  and  are  supported  by 
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two  more  knife-edges  attached  firmly  to  the  beam  at  these 
points  with  their  angles  tuiiied  upwards.  Hard  plates  rest 

horizontally  on  these  edges,  and  fi'oni  these  plates  the  scale- 
jrnns  hang. 

The  distances  of  the  middle  knife-edge  from  the  other  two 
are  called  the  arms. 

Double  Weighing. — This  is  a  method  of  using  the  balance  in 

which  we  ai-e  quite  independent  of  errors  of  adjustment  in  it  ;  it 
being  only  necessaiy  for  accuracy  that  the  balance  should  be 
sensitive,  that  is,  that  it  should  readily  detect  small  differences  in 

the  mass  of  the  body  placed  in  either  pan. 

First  Method.  The  body  is  placed  in  either  pan  and  counter- 
balanced by  other  bodies,  it  may  be  standard  weights  or  not.  It 

is  not  necessary  that  the  position  of  equilibrium  to  which  the 

balance  is  brought  should  be  its  unloaded  equilibrium  position. 
The  body  is  thus  removed  and  standard  weights  put  in  its 

place  till  the  same  equilibrium  position  is  got  again.  The  mass 
of  the  body  is  then  the  same  as  that  of  the  weights  which  have 

replaced  it. 

Second  Method.  The  body  is  placed  in  one  pan  and  a  body 
that  will  more  than  counterbalance  it  in  the  other.  This  body 

is  called  the  counterpoise. 

Equilibrium  is  restored  by  placing  weights  of  mass  i/^  in  the 
pan  with  the  body. 

The  body  and  M^  are  removed,  and  equilibrium  is  again  re- 
stored by  means  of  weights  of  mass  M^. 

Then  the  mass  of  the  body  is  i/o  —  M^. 
This  method  is  nmch  more  convenient  than  the  other,  because 

it  is  much  easier  to  get  the  equilibrium  state  by  means  of  the 

standard  weights  than  with  other  bodies  such  as  shot,  sand,  etc ; 
and  it  is  more  convenient  to  do  all  the  final  adjustments  for 

equilibrium  by  putting  bodies  in  one  pan  only,  say  the  right- 
hand  one.  The  counterpoise  may  then  be  placed  in  the  left-hand 
pan  and  left  there  throughout  the  operation ;  the  body  and  the 

weights,  i/^,  J/.,  being  placed  in  the  right-hand  pan. 
The  method  of  double  weighing  is  employed  wherever  great 

accuracy  is  required,  as  for  instance  in  doing  scientific  work. 

But  for  all  ordinary  purposes  a  body  is  weighed  by  putting  it  in 
one  pan  and  the  weights  in  the  other  ;  and  the  balance  is  required 
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to  be  so  well  adjusted  as  to  allow  this  method  to  give  results  of 
fair  accuracy. 

In  considering  what  conditions  must  be  satisfied  by  a  balance 

we  shall  suppose  that  the  l^alance  is  to  be  used  in  this  simple  way. 

Requisites  of  a  good  Balance. — (l)  The  balance  should  be 
true:  that  is,  with  any  equal  masses  in  the  pans  the  balance 
should  rest  with  the  beam  horizontal. 

(2)  The  balance  should  be  sensitive  :  that  is,  a  small  excess  of 

mass  on  one  side  should  produce  an  appreciable  inclination  of  the 
beam. 

(3)  The  balance  should  be  stable  :  that  is,  it  should  quickly 

take  up  its  position  of  equilibrium. 
1.  For  the  balance  to  be  true  :  (i)  It  must  rest,  when  not 

loaded,  with  the  beam  horizontal  ;  (ii)  Any  two  equal  weights 

in  the  pans  must  make  the  beam  horizontal. 
Hence,  the  moments  of  these  weights  about  C  must  be  equal ; 

and  therefore  the  arms  must  be  equal.  And  it  follows  that  any 

other  pair  of  equal  weights  will  make  the  beam  horizontal. 
When  the  balance  satisfies  the  first  of  these  conditions  the 

second  condition  may  be  tested  as  follows.  Put  a  body  in 

one  pan  and  counterbalance  it,  that  is,  put  weights  in  the 

other  pan  so  as  to  get  the  beam  horizontal.  Now  intei'change 
body  and  weights.  If  the  beam  is  still  horizontal  the  masses  of 

body  and  weights  must  be  equal,  and  the  second  required  condi- 
tions for  the  balance  obtains. 

2.  For  the  balance  to  be  sensitive  the  middle  knife-edge  must 
not  be  much  above  the  line  of  the  other  two,  if  at  all,  or  far  above 

the  C.G.  of  the  beam.  The  knife-edges  should  also  work  with 
very  little  friction. 

3.  For  the  balance  to  be  stable,  so  that  it  may  swing  to  its 

equilibrium  position  quickly,  the  middle  knife-edge  should  be 
some  distance  above  the  line  of  the  outer  ones  and  above  the 
C.G.  of  the  beam. 

Sensitiveness  and  Stability.— It  is  clear  that  sensitive- 
ness and  stability  are  opposed  to  each  other,  and,  as  a  rule,  the 

more  sensitive  a  balance  the  less  stable  is  it,  and  therefore  the 

less  quickly  can  we  weigh  with  it.  The  best  condition  for  the 
balance  to  be  in  will  depend  on  the  purpose  for  which  it  is  to  be 
used. 

I 
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If  it  is  to  be  used  for  scientific  work  in  which  great  accuracy 

is  i-equii'ed  sensitiveness  is  essential,  with  a  small  amount  of 
stability.     Then  the  weighings  can  only  be  done  slowly. 

If  it  is  a  balance  to  be  used  for  ordinary  commercial  purposes, 
stability,  or  quickness  of  indication,  is  necessary,  with  moderate 
sensitiveness.  Then  the  weighings  can  be  done  quickly,  but  only 

with  a  small  amount  of  accuracy  as  compared  with  what  is  at- 
tained in  the  other  case. 

For  example,  with  a  scientific  balance  it  is  by  no  means  un- 

common to  weigh  a  body  of  200  grams  correctly  to  '01  gi-am 
even  in  very  lough  work,  which  is  an  accuracy  of  1  in  20,000  ; 

while  for  ordinary  purposes  it  is  generally  sufficient  to  weigh 
a  body  of  about  6  pounds  correctly  to  half  an  ounce,  which  is 
about  an  accuracy  of  1  in  200.  Thus,  the  accuracy  in  the  first 

case  is  100  times  as  great  as  in  the  other. 

Since  the  weights  of  the  pans  always  act  through  the  knife- 
edges  A  and  B,  in  any  problem  about  a  balance  we  may  consider 
the  masses  of  the  pans  to  be  concentrated  at  A  and  B,  and  we 

may  take  the  C.G.  of  the  balance  as  that  of  the  beam  with  masses 
equal  to  those  of  the  pans  concentrated  at  A  and  B. 

Example. — With  an  inaccurate  balance  it  is  necessary  to 

put  2  oz.  in  the  left-hand  pan,  the  other  being  empty,  to 
make  the  beam  horizontal,  and  12  ibs.  in  the  left-hand 
pan  balances  12^  lbs.  in  the  other.     What  mass  must  be 

placed  in  the  left-hand   pan    to   balance    7   lbs.  in    the 
right  ? 

Let  a  and  b  be  the  lengths  of  the  left  and  right-hand  arms. 
Let  W  lbs.  be  the  mass  of  the  beam  and  pans  ;  and  h  the 

distance  of  the  C.G.  of  beam  and  pans  (the  masses  of  the 

pans  being  supposed  collected  on  knife-edges)  to  right 
of  fulcrum. 

Let  x  lbs.  be  the  required  mass. 

Then,  by  moments  about  the  fulcrum, 

ia=W.h,    (1) 

12.a=12j.6-f  Wh,    (2) 
a;a  =  n+  Wh   (3) 

From  (1)  and  (2), 

(12-^)a=12i6. 
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From  (1)  and  (3), 

12-^     12^' 8^-1     28     4 
95        49     7 

56^-7  =  380, 
56^  =  387, 

The  required  mass  is  6|^  lbs. 

In  questions  on  balances,  when  it  is  said  that  a  body  in  one 

of  the  pans  appears  to  weigh  a  certain  amount  it  is  meant  that 
weights  of  that  amount   must   be   put   in   the   other  pan   to 
counterbalance  it. 

Example. — A  balance  has  unequal  arms.    A  body  of  weight 
W  when  placed  in  one  pan  appears  to  have  weight  P, 

^    and   when  placed  in   the   other  pan  appears    to    have 
weight  Q.     Show  that  W  =  \/PQ. 

Let  a  and  b  be  the  lengths  of  the  arms. 

Then,  by  moments  about  the  fulcrum, 
Wa  =  P6, 

Qa=Wb. ■  ̂  =  R. ■  Q     W 

..    W=VPQ. 

Example. — A  balance  has  equal  arms,  but  does  not  rest 
with  its  beam  horizontal.  A  body,  of  weight  W,  appears 
to  have  weight  P  or  Q  according  as  it  is  placed  in  one  or P+0 

the  other  pan.     Show  that  W  =  — —- 

Let  a  be  the  length  of  each  arm. 
Let  w  be  the  weight  of  the  balance  with  pans. 
And  let  h  be  the  horizontal  distance  from  the  fulcrum  of 

the  C.G.  of  the  balance,  including  the  pans,  their  masses' 
being  supposed  concentrated  on  the  points  of  support. 
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By  moments  about  the  fulcrum, 

Qa  =  Wa  +  w/i. 
/. ,  by  subtraction, 

(W-Q)a  =  (P-WK 
2W  =  P  +  Q, 

Exercises  XI.  a. 

1.  A  body  of  mass  4  when  weighed  in  one  pan  of  a  balance  with 
unequal  arms  appears  to  have  mass  4:^ .  What  is  the  ratio  of  the 
arms  ?  and  what  will  the  body  appear  to  weigh  in  the  other  pan  ? 

'2.  If  the  arms  of  a  balance  are  unequal,  and  a  body  weighs  14  and 
15  oz.  in  the  two  pans,  show  that  its  real  mass  is  14*5  oz. 

3.  If  the  beam  does  not  rest  horizontal,  and  a  body  weighs  14  and 

15  oz.  in  the  two  pans,  show  that  its  real  mass  is  14*491  oz. 
4.  Find  the  ratio  of  the  arms  when  a  body  appears  to  weigh  400 

and  441  grams  in  the  two  pans. 
5.  The  arms  of  a  balance  are  in  the  ratio  9  :  10.  Two  pounds  of  a 

substance  are  weighed,  one  in  each  pan  ;  what  is  the  apparent  sum 
of  the  masses  ? 

6.  The  arms  of  a  balance  are  in  the  ratio  7:8.  If  a  tradesman 
sells  actually  equal  quantities  of  a  material  from  the  two  pans,  show 

that  he  gains  yys"  P^r  cent.  If  he  sells  apparently  equal  quantities 
from  the  two  pans  (that  is,  by  weighing  them  out  against  equal 
weights  in  the  pans),  show  that  he  loses  \j^  per  cent. 

7.  Tea  is  sold  from  the  longer  arm  of  a  balance,  the  ratio  of  the 
arms  being  15  :  16,  nominally  at  2s.  6d.  per  pound.  What  price  per 
pound  is  actually  paid  ? 

8.  The  combined  apparent  weights  of  two  pounds  weighed  in  the 

two  pans  of  a  balance  with  unequal  arms  are  2yo  lbs.'  weight.  What is  the  ratio  of  the  arms  ? 

9.  A  balance  has  unequal  arms,  and  it  does  not  rest  when  unloaded 
with  its  beam  horizontal.  It  is  necessary  to  put  a  weight,  iv,  into 
one  pan  to  make  the  beam  horizontal.  A  body,  of  weight  W,  appears 
to  have  weight  P  or  ̂   according  as  it  is  placed  in  this  or  the  other 
pan.     Show  that 

W'^-wW=PQ-tvP. 

10.  If  the  arms  are  a  and  b,  a  being  greater  than  h ;  and  if  w  must 
be  put  in  the  pan  on  the  arm  a,  show  that  the  only  weight  that  will 

be  weighed  correctly  in  either  pan  is  equal  to   y. 
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The  Common  or  Roman  Steelyard.— Suppose  AOB  is  a  rigid 
bar  resting  horizontally  on  a  fulcrum  at  0,  which  is  near  the  end 
A.  The  C.G.  of  the  bar  is  between  0  and  B.  P  is  a  movable 

weight  which  can  be  hung  on  the  bar  between  0  and  B. 

Suppose  a  body  of  weight 
A        O        G  X  B 

TV 

W 

Fig.  137.— Principle  of  common  steelyard. 

W  is  suspended  from  A. 
This  can  be  balanced  by 

placing  P  in  a  suitable 
position  for  any  magnitude 
of  W  between  certain  limits. 
W   will    have    its    smallest 

value  when  P  is  placed  as  near  to  0  as  possible,  and  its  greatest 

value  when  P  is  placed  as  near  to  the  end  B  as  possible. 

Fig.  138.— Common  steelyard. 

The  position  of  P  when  a  given  weight  W  is  balanced  may  be 
determined  and  may  be  made  to  indicate  the  magnitude  of  W. 

This  is  the  principle  of  the  steelyard.  This  apparatus  consists 

of  a  rod  or  bar  AOB  turning  on  a  knife-edge  support  at  0.  A 
hook  or  pan  carried  on  another  knife-edge  attached  to  the  rod  at 
A,  and  having  its  edge  turned  upwards,  serves  to  support  the 

body  to  be  weighed.  The  movable  weight  P  is  attached  to 

a  ring  which  slides  along  the  arm  OB.  This  arm  is  graduated  to 
show  the  values  of  W  corresponding  to  the  various  positions 
of  P. 

Fig.  138  shows  the  actuai  apparatus  in  one  of  its  forms. 
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Graduation  of  the  Steelyard. — Suppose  the  steelyard,  with 
the  weight  of  the  hook  or  pan  supposed  concentrated  at  the  edge 
at  A,  to  have  mass  w  units  and  C.G.  at  O.     (Fig.  137.) 

Suppose  a  body  of  mass  W  to  be  balanced  by  placing  the 
movable  weight,  of  mass  P,  at  X. 
We  shall  find  the  relation  that  must  exist  between  W  and 

OX,  so  that  we  may  know  what  mass  is  balanced  with  P  in  a 

given  position,  or,  conversely,  where  P  must  be  put  to  balance  a 
given  mass. 

By  moments  about  0  we  have 

W.OA=w.OG  +  V.OX. 

••   ̂ -~0A~-^7Ja'^^- 
By  means  of  this  relation  we  can  determine  the  values  of 

OX  corresponding  to  various  values  of  W,  supposing  w,  OG, 
and  OA  to  be  known  ;  and  then  marks  may  be  made  along  the 

bar  at  the  various  positions  of  X,  and  the  corresponding  values 
of  W  marked  against  them. 

As  a  simple  example,  suppose  the  mass  of  the  steelyard  is 
10  lbs.,  that  of  P  is  8  lbs.,  OG  is  2  inches,  and  OA  is  4  incjies, 

and  it  is  required  to  graduate  the  bar  in  pounds. 
The  above  relation  becomes,  calling  OX  x  inches, 

w     10.2^8 W=— i — +7.^; 4         4 

W  =  5  +  2a\ 

If  W  =  10,     x  =  1\\ 

if  W  =  ll,     .r  =  3; 

if  W  =  12,     .r  =  3i; 
and  so  on. 

The  bar  being  graduated  in  pounds,  the  graduations  are,  in 

this  case,  spaced  out  at  half -inch  distances. 
It  may  not  be  possible  to  get  P  nearer  to  0  than  2|  inches 

Then  the  graduations  begin  with  10  lbs. 

Suppose,  in  this  case,  that  the  greatest  distance  at  which  P 
can  be  placed  from  0  is  20  inches.  The  corresponding  value 
of  W  is  given  by 

W  =  5  +  2.20; 

W  =  45. 
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The  greatest  weight  that  can  be  weighed  is  45  lbs. 
It  is  clear  from  the  relation  between  the  variable  quantities 

W  and  OX  and  the  fixed  quantities,  w,  OG,  OA,  that  in  any  case 
equal  increments  in  W  correspond  to  equal  increments  in  OJl. 

That  is,  the  graduations  are  always  uniformly  spaced  out. 
This  being  known  it  is  a  much  easier  matter  to  graduate  the 

steelyard  in  practice  than  by  actually  measuring  the  quantities 

W,  P,  OG,  OA  and  using  the  formula. 
Moreover  the  practical  method  is  more  likely  to  give  accurate 

results  than  when  the  values  found  for  these  quantities  are 

relied  upon  for  the  graduation. 
The  method  is  this.  Find  by  experiment  the  positions  of  P  for 

two  known  values  of  W,  that  is,  by  using  for  W  two  different 

standard  weights.  Divide  the  bar  between  these  two  positions 
into  as  many  equal  divisions  as  there  are  units  of  difference  in  the 
two  values  of  W.  And  continue  the  divisions  on  both  sides  of 

these  two  determined  positions. 

Thus  suppose  we  find  that  to  balance  weights  of  5  and  25 

kilograms  P  must  be  placed,  respectively,  at  points  >S'  and  T  on 
the  bar,  and  the  distance  ST  is  85  centimetres.  Divide  ST  into 

20  equal  parts,  85/20  or  4^  cms.  long  each.  The  marks  from 

S  to  T  correspond  to  5,  6,  7,  ...  ,  23,  24,  25  kilograms. 
Continue  the  divisions,  each  equal  to  4|  cms ,  on  both  sides  of 

>S'  and  T  and  put  the  corresponding  marks  4,  3,  ...  ,  and  26, 
27,  .  .  .   against  them. 

In  graduating  in  this  manner,  two  standard  weights  that  are 

considerably  difi'erent  from  each  other,  about  the  lowest  and 
highest  that  the  steelyard  will  weigh,  should  be  used  for  the  sake 

of  accuracy  ;  as  any  small  error  in  determining  the  position  of 
P  for  either  of  them  will  then  make  a  smaller  proportional  error 
in  the  length  of  a  division. 

Experiment  37. — Take  an  ordinary  steelyard  and  weigh  the 
movable  weight.  Even  if  it  cannot  be  removed  this  can  be  managed 
by  so  holding  the  bar  of  the  steelyard  above  the  pan  in  which  the 
weight  is  put,  that  when  the  weighing  is  made  it  does  not  touch  the 
weight  or  the  ring  which  carries  it.     Call  this  weight  P  lbs. 

Measure  the  length  of  a  division  corresponding  to  one  pound. 
This  is  best  done  by  measuring  the  length  of  the  whole  of  the 
divided  part,  and  dividing  by  the  number  of  divisions.  Let  this 
length  be  d  inches. 
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Measure  as  accurately  as  possible  the  distance  from  the  fulcrum 
to  the  edge  on  which  the  load,  or  body  to  be  weighed,  is  carried. 
Let  this  be  a  inches. 

Compare  the  values  of  a  and  Pc^,  which  should  be  equal  to  each 
other. 

Experiment  38. — With  the  steelyard  use  a  different  movable 
weight.  This  may  be  done  by  attaching  to  the  proper  weight  an 
additional  one. 

Take  three  known  masses  which  can  all  be  balanced  by  the  new 
weight,  and  such  that  one  is  midway  in  value  between  the  other 
two,  such  as  3,  5,  and  7  pounds. 

Balance  these  in  turn  by  the  new  weight. 
Show  that  the  distance  between  the  first  and  second  positions  is 

equal  to  that  between  the  second  and  third. 

The  Danish  Steelyard. — This  is  a  bar  AB  having  a  weight 
or  mass  of  metal  attached  to  one  end  B,  so  that  the  C.G.,  O^  is 

near  to  B.  The  fulcrum  is  movable.  The  body  to  be  weighed 
is  hung  on  the  end  A. 

A 

w 

Fig.  139.-  Principle  of  Danish  steelyard. 

The  weight  of  the  body  is  determined  in  this  case  by  the 

position  of  the  fulcrum  under  the  rod,  or  the  point  of  the  rod 
which  must  rest  on  the  fulcrum,  and  each  graduation  is  marked 
with  a  number  showing  the  weight  of  the  body  when  that  mark 
comes  over  the  fulcrum. 

It  is  clear  that  the  zero  graduation  mark  coincides  with  6', 
because  when  no  weight  is  attached  the  rod  balances  at  G. 

Let  X  be  the  position  of  the  graduation  mark  for  a  weight  W, 
so  that  the  bar  balances  at  X.     By  moments  about  G, 

W  .AX=V.GX; 

i.e.,  V!r{GA-GX)  =  V.GX- 

It  follows  from  this  that  the  graduations  are  not  equally 

spaced  out  along  the  bar. 
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Exercises  XI.  b. 

1.  A  steelyard  weighs  16  lbs.,  and  its  C.G.  is  .3  inches  from  the 
fulcrum.  The  weight  is  hung  on  at  4  inches  from  the  fulcrum  ;  and 
the  movable  weight  is  8  lbs.  Find  the  graduation  marks  for  56  lbs. 
and  112  lbs. 

2.  A  steelyard  weighs  6  kilos.,  its  C.G.  is  Sl;  cms.  from  the 
fulcrum  ;  the  point  of  support  of  the  weight  is  6  cms.  on  the  other 
side  of  the  fulcrum,  and  the  movable  weight  is  3  kilos.  Find  the 
distance  from  the  fulcrum  of  the  50  kik>.  graduation,  and  the 
distance  between  successive  kilo,  graduations. 

3.  If  P  units  is  the  mass  of  the  movable  weight,  and  the  body  to 
be  weighed  is  liung  on  at  a  distance  a  from  the  fulcrum,  show  that 
the  common  distance  between  successive  graduations  for  units  of 

.    a 
mass  is  — . 

4.  The  body  to  be  weighed  is  hung  on  at  4  inches  from  the 
fulcrum,  and  the  graduations  for  6  and  11  lbs.  are  10  inches  apart. 
What  is  the  movable  weight  ? 

5.  The  steelyard  and  movable  weight  weigh  9  lbs.  together.  The 
steelyard  will  balance  in  the  ring  of  the  movable  weight  when  this 
is  at  the  6  lb.  graduation,  and  when  the  movable  weight  is  at  the  30 
lb.  graduation  the  two  together  will  balance  on  the  14  lb.  gradua- 

tion. What  are  the  masses  of  the  steelyard  and  of  the  movable 
weight  ? 

6.  The  weight  of  a  Danish  steelyard  is  10  lbs.,  and  the  body  to  be 
weighed  is  hung  on  at  24  inches  from  the  Centre  of  Gravity.  How 
far  from  the  Centre  of  Gravity  are  the  graduations  for  1,  2,  and  3  lbs.? 

7.  On  adding  a  certain  amount  to  the  body  weighed,  the  movable 
weight  must  be  moved  by  a  distance  a.  If  the  movable  weight  is 
used  with  an  extra  pound  weight  added  to  it,  on  adding  the  same 

quantity  as  before  to  the  body  M'^eighed,  the  movable  weight  must  be 
moved  by  a  distance  b.     Show  that  the  mass  of  the  movable  weight 

8.  If  0  is  the  fulcrum  and  G  the  C.G.  of  the  bar,  W  and  P  the 
weights  of  the  steelyard  and  movable  weight,  show  that  the  gradua- 

tion for  any  weight  is  at  a  distance  proportional  to  that  weight  from 

a  point  C  in  the  bar,  where  00= — ^73 — ,  and  0  is  on  the  opposite 
side  of  0  from  G. 

9.  A  balance  rests  with  its  beam  horizontal  ^;:hen  unloaded,  and 

its  arms  are  10  and  10|-  inches  long  respectively.  What  mass  placed 
in  the  pan  at  the  end  of  the  longer  arm  will  balance  15  lbs.  placed 
in  the  other  pan  ?     (Camb.  Jr.  Loc,  Mech.,  1898.) 

I 
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Summary. 

A  Balance  is  an  apparatus  for  deternuning  the  mass  of  a  body,  by 
comparing  the  weight  of  the  body  with  the  weights  of  standard 
masses,  used  for  weighing,  and  called  weights. 

Double  Weighing  is  a  method  used  for  determining  masses  with 
great  accuracy.  By  its  means  we  are  made  independent  of  the 
adjustments,  but  not  of  the  quality  or  sensitiveness,  of  the  balance. 

Li  a  balance  used  for  ordinary  purposes,  all  the  adjustments  are 
supposed  to  be  sufficiently  exact  to  render  double  weighing  unneces- 
sary. 

Requisites  of  a  good  Balance. — 
(1)  It  should  be  true  ; 
(2)  It  should  be  sensitive  ; 

(3)  It  should  be  stable. 
Sensitiveness  and  stability  are  opposed  to  each  other.  The  best 

condition  for  the  balance  with  regard  to  these  qualities  will  depend 
on  the  purpose  for  which  it  is  to  be  used. 

The  Common  or  Roman  Steelyard  is  an  apparatus  for  weighing 
bodies  by  means  of  a  movable  weight  which  can  be  placed  on  a 
graduated  arm.  The  theory  shows  that  equal  distances  along  the 
arm  correspond  to  equal  increments  in  the  weight  of  the  body 
weighed.  The  steelyard  is  best  graduated  by  using  two  standard 
weights,  in  turn,  in  place  of  the  body  to  be  weighed,  and  finding  the 
corresponding  positions  of  the  movable  weight  and  then  dividing  vip 
the  bar  with  graduations  to  correspond  to  these  two  positions. 

The  Danish  Steelyard  is  a  bar  with  a  fixed  weiglit  at  one  end.  The 
body  to  be  weighed  is  hung  on  at  the  other  end.  The  weight  is 
determined  by  the  point  of  the  l)ar,  that  must  rest  on  a  fixed  fulcrum 
or  support  that  it  may  balance,  graduations  corresponding  to  various 
weights  being  marked  along  the  bar. 



CHAPTER  XII. 

VELOCITY.     ACCELERATION.     KINEMATICAL 

EQUATIONS. 

The  velocity  of  a  moving  body  or  point  means  the  distance 

it  passes  over  per  unit  of  time. 
We  shall  consider  the  motion  of  a  body  along  a  straight  line, 

that  is,  rectilinear  motion. 

The  velocity  of  a  body  moving  along  a  straight  line  may  be 

either  uniform  or  variable. 

Uniform  velocity. — Suppose  a  body  to  move  in  such  a 
manner  that  the  distance  passed  over  in  any  interval  of  time 

is  always  proportional  to  the  length  of  the  interval  ;  then  the 
velocity  is  uniform. 

We  may  also  say  that  the  distances  passed  over  in  equal 

intervals  of  time'  must  be  equal,  however  short  the  intervals 
may  be.  It  is  necessary  to  specify  this  last  condition  ;  because 
a  body  may,  for  instance,  move  fast  at  the  beginning  of  each 
second  and  slowly  at  the  end  of  it,  but  so  that  the  same 
distance  is  traversed  in  each  second.  The  velocity  would  not 
be  uniform  ;  and  shorter  equal  intervals  than  seconds  could 

be  taken,  so  that  the  distances  in  the  intervals  would  not  be 

equal. 
Variable  Velocity. — The  velocity  of  a  body  is  variable  if  it 

does  not  pass  over  a  distance  in  any  interval  of  time  propor- 
tional to  the  time  ;  or  if  equal  distances  are  not  described  in 

all  equal  intervals  of  time. 

Measure  of  Velocity. — To  measure  a  velocity  we  require  a 
unit  in  terms  of  which  to  measure  length,  and  a  unit  in  terms 
of  which  to  measure  time.     The  velocity  is  measured  by  the 
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number  of  units  of  length  passed  over  per  unit  of  time.  This 

definition  is  applicable,  as  we  shall  see,  to  any  velocity,  whether 
uniform  or  variable. 

A  velocity  may  be  measured  for  instance  in  feet  per  second. 

The  velocity  of  the  body  would  then  be  measured  by  the  num- 
ber of  feet  passed  over  per  second. 

If  the  velocity  is  uniform  the  same  number  of  feet  is  passed 
over  in  each  second  of  the  motion ;  and  the  velocity  is  measured 

by  the  number  of  feet  passed  over  in  any  one  second  ;  or,  in 
general,  by  the  number  of  units  of  length  passed  over  in  any 
unit  of  time. 

If  the  velocity  is  variable  it  must  be  measured  in  a  different 

manner.  We  can  then  only  speak  of  the  velocity  at  any  given 
instant  of  time  because  it  is  changing  from  instant  to  instant. 

The  measure  of  a  variable  velocity  at  a  given  instant  of  time 

is  an  example  of  what  is  called  a  limiting  value,  and  the  manner 
in  which  it  may  be  found  is  illustrated  in  the  following 
example. 

Estimation  of  Variable  Velocity. — Suppose  a  body  moves 
in  such  a  manner  that  the  number  of  feet  passed  over  in  any 
given  number  of  seconds  is  four  times  the  square  of  the  number 
of  seconds.  Let  us  consider  how  the  velocity  at  the  end  of  the 
2nd  second  of  the  motion  would  be  measured. 

Distance  in  2  seconds  =4  .  2-  =  16  feet. 

Distance  in  3  seconds  =  4  .  3^  =  36  feet. 

.'.    distance  in  3rd  second  =  20  feet, 
and  mean  velocity  in  3rd  second  =  20  feet  per  second. 

In  same  way  we  should  find  that  mean  velocity  in  2nd  second 

=  12  feet  per  second. 
These  two  results  are  considerably  different  from  each  other, 

and  are  both  of  them  very  different  from  what  we  want  to  find, 
which  is  some  quantity  between  the  two. 

To  find  a  closer  approximation  to  the  actual  velocity  at  the 
end  of  the  2nd  second  we  shall  now  take  a  much  shorter 

interval  than  1  second,  namely  "1  second. 

Distance  in  2     seconds  =  4.2-       =16  feet. 

Distance  in  2*1  seconds  =  4  .  (2-1)2=  17-64  feet. 
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/.    distance  in  interval   "1   second  after  end  of  2nd  second  is 
1-64  feet, 

and  mean  velocity  in  this  interval  is  16 "4  feet  per  second. 
If  we  take  an  interval  "01  second  after  end  of  2nd  second  Me 

find  in  the  same  way  that  mean  velocity  during  it  is 

4(2-01)2-4.2-     ,^^,  .    ,  -, 
— ^   ^   ::=16'04  feet  per  second. 

An  interval  "OOl  second  would  give  for  mean  velocity  16"004 
feet  per  second. 

As  we  take  shorter  and  shorter  intervals  we  get  nearer  and 

nearer  to  the  quantity  16  feet  per  second.  And  by  taking  a 
short  enough  interval  we  can  make  the  mean  velocity  as  near 

to  16  feet  pel'  second  as  we  please. 
This  then  is  the  limiting  value  which  we  are  seeking.  And 

the  velocity  at  the  end  of  the  2nd  second  is  16  feet  per  second. 

The  same  thing  may  be  quickly  shown  by  the  help  of 

Algebra. 
Let  t  second  be  a  very  short  interval  of  time,  t  being  a  small 

fraction. 

Distance  in  2  seconds        =  4  .  2^  feet. 

Distance  in  {2 +  t)  seconds  =  4  {2 -{-t)'^  feet 
=  4(4  +  4«;  +  jf2)feet. 

.•.    distance  in  the  interval  t  second  after  end  of  2nd  second  is 

.'.    mean  velocity  in  the  interval  t  second  is 

  =  16  +  4^  feet  per  second. 
6 

By  taking  t  smaller  and  smaller  this  approaches  16  as  its 
limit. 

.".   the  velocity  at  the  end  of  2  seconds  is  16  feet  per  second. 
The  value  of  the  velocity  at  any  instant  of  the  motion  is 

specified  as  follows. 
Take  a  very  short  interyal  of  time,  t,  including  the  instant  in 

question  {t  will  be  a  very  small  fraction,  and  the  given  instant 

may  be  at  the  beginning  or  end  of  this  interval).  Let  s  be  the 

distance  passed  over  in  this  time.  Then  6-/^  is  the  mean  velocity 
during  the  interval  t ;  or  it  is  the  velocity  which  the  body  must 
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have  throughout  this  interval  in  order  to  describe  the  distance, 
s,  that  is  actually  described. 

The  velocity  of  the  body  at  the  instant  in  question  is  the 

limiting  value  of  the  fraction  s/t,  when  t,  and  consequently  also 
s,  is  made  indefinitely  small. 

In  other  words,  it  is  the  limiting  value  of  the  mean  velocity 
in  an  indefinitely  short  interval,  including  the  instant. 

The  measure  of  the  velocity  at  a  given  instant,  when  the 

velocity  is  varying,  may  also  be  specified  as  the  number  of  units 
of  length  which  the  body  would  pass  over  in  a  unit  of  time  if  it 
went  on  moving  for  a  whole  unit  of  time  with  the  velocity  which 
it  has  at  that  instant. 

Acceleration. — When  the  velocity  of  a  body,  or  the  rate  at 
which  it  moves,  becomes  greater,  we  say,  in  ordinary  language, 
that  the  velocity  is  accelerated,  or  is  undergoing  acceleration  ; 

and  if  the  velocity  becomes  less  we  say  that  it  is  undei-going 
retardation.  But,  in  mechanics,  the  word  acceleration  is  applied 
to  any  change  of  velocity  ;  it  only  differs  in  algebraical  sign 
according  as  the  velocity  is  actually  becoming  greater  or  less. 

The  acceleration  of  a  moving  body  at  any  instant  means  the  rate 
at  which  its  velocity  is  increasing. 

Or  it  is  the  increase  of  velocity  per  unit  of  time. 
If  the  velocity  is  actually  increasing,  it  follows  that  the 

acceleration  is  a  positive  quantity  ;  if  the  velocity  is  decreasing 
the  acceleration  is  negative. 

If  the  velocit}'  of  a  body  at  any  instant  is  given  in  feet  per 
second,  its  acceleration  would  be  specified  by  saying  that  a 

velocity  of  so  many  feet  per  second  is  added  to  its  velocity  per 
second.  Or,  in  short,  we  should  say  that  it  has  an  acceleration 
of  so  many  feet  per  second  per  second. 

Thus,  if  at  a  given  instant  a  body's  velocity  is  4  feet  pei' 
second,  and  at  the  end  of  a  second  it  is  6  feet  per  second,  and  at 

the  end  of  another  8  feet  per  second,  and  so  on,  the  velocity 

increasing  uniformly  ;  we  should  say  that  its  velocity  increases 
by  2  feet  per  second  in  every  second,  or  that  its  acceleration  is 
2  feet  per  second  per  second. 
Uniform  Acceleration  is  the  acceleration  of  a  body  whose 

velocity  increases  by  equal  increments  in  equal  intervals  of 
time,  however  small  the  intervals  of  time  may  be  taken. 
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Or,  it  is  the  acceleration  of  a  body  in  which  the  velocity 

increases  in  any  time  by  an  amount  pi:oportional  to  the  time, 
whatever  be  the  time  considered. 

When  this  is  not  the  case  the  acceleration  is  variable. 

In  the  cases  we  shall  have  to  consider,  the  acceleration  will 

generally  be  uniform. 

An  operation  that  is  very  frequently  necessary  in  dealing 

with  the  motion  of  bodies  is  to  express  a  velocity  or  an  accelera- 
tion, that  is  given  in  one  system  of  units,  in  terms  of  another 

system. 
This  operation  is  called  conversion  of  velocities  or  of 

accelerations.     We  shall  give  some  examples  of  it. 

Example. — A  train  is  moving  at  the  rate  of  60  miles  per 
hour.     Express  this  velocity  in  feet  per  second. 

Velocity  of  60  miles  in  1  hour 

=  velocity  of  60  x  5280  feet  in  60  x  60  sees. 

1     .,       f  60  X  5280  .     -. _  =  velocity  of   — —  in  1  sec. •"  -^         60  X  60 

= velocity  of  88  feet  per  sec. 

It  is  rather  useful  to  remember  that  a  velocity  given  in  miles 

per  hour  is  converted  to  feet  per  second  by  multiplying  by  the 

fraction  f  | ;  and,  conversely,  to  convert  from  feet  per  second  to 

miles  per  hour  we  must  multiply  by  |f . 
To  remember  which  is  which,  note  that  22  occurs  in  the 

numerator  for  converting  from  miles  to  feet,  because  it  occurs 
as  a  factor  in  the  number  of  feet  in  a  mile. 

Example.— Express  an  acceleration  of  32  feet  per  second 

per  second  in  yards  per  minute  per  minute. 

Velocity  of  32  ft.  per  sec.  is  added  in  each  sec. 

.-.    vel.  of  ̂   yds.  per  sec.  is  added  in  each  sec. 

.-.    vel.  of  ̂   X  60  yds.  per  min.  is  added  in  each  sec. 

.-.    vel.  of  ̂ ^  X  60  X  60  yds.  per  min.  is  added  in  each  min. 

That  is,  required  acceleration  is 

^  X  60  X  60 = 38400  yds.  per  min.  per  min. 



VELOCITY.     KINEMATICAL  EQUATIONS.  193 

The  solution  may  be  more  shortly  written  as  follows  : 

Acceleration  of  32  ft.  per  sec.  per  sec. 

=  accn.  of  ̂   yds.  per  ̂   min.  per  ̂j^  min. 

=  accn.  of  ̂   X  60  yds.  per  min.  per  ̂jj  min. 

=  accn.  of  ̂   X  60  X  60  yds.  per  min.  per  min. 

=accn.  of  38400  yds.  per  min.  per  min. 

We  have  seen  that,  when  feet  and  seconds  are  the  units  of 

length  and  time,  a  velocity  is  specified  in  feet  per  second  and  an 
acceleration  in  feet  per  second  per  second.  Again,  we  may  speak 
of  a  velocity  or  of  an  acceleration  as  so  many  units  of  velocity 

or  acceleration  in  feet  aiid  seconds^  or  as  so  many  foot-second  units 
of  velocity  or  acceleration. 

Thus,  a  velocity  of  two  feet  per  second  is  2  units  of  velocity 

in  feet  and  seconds,  or  2  foot-second  units  of  velocity. 
An  acceleration  of  2  feet  per  second  per  second  is  2  units  of 

acceleration  in  feet  and  seconds,  or  2  foot-second  units  of  accelera- 
tion. 

Example.— A  body  starts  from  rest,  and  has  an  acceleration 
of  7  cms.  per  sec.  per  sec.  When  will  it  be  moving  with 
a  velocity  of  1  metre  per  minute  ? 

Vel.  of  1  metre  per  min. 

=  vel  of  100  cms.  in  60  sees. 

=  vel.  of  §  cms.  per  sec. 

Vel.  acquired  in  each  second  is  7  cms.  per  sec. 

.*.    time  required  to  acquiie  vel.  of  §  cms.  per  sec. 

=  I  -r  7  sees.  =  o\  sec. 

Example. — A  body  is  moving  with  a  velocity  of  8  feet  per 
second  ;  and  it  comes  to  rest  in  1^  minutes.  Express  its 

acceleration  in  centimetres  and  seconds.     1  ft.  =  30'48  cms. 

[Note  that  it  is  best  to  first  express  all  quantities  in  terms 
of  the  units  required  in  the  answer.] 

Given  velocity  of  body  =  8x  30-48  cms.  per  sec. 

=  243*84   cms.  per  sec. 
E.S.  N 
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This  vel.  is  lost  in  90  sees. 

,   .    ,     .     ̂       ̂       „  243-84  .  , 
.'.    vel.  IS  lost  at  rate  of  cms.  per  sec,  m  each  sec. 

yu 

.'.    the  acceleration  is  negative,  and  is  equal  to 
-27093  cms.  per  sec.  per  sec. 

Exercises  XII. 

1.  Show  that  a  velocity  given  in  miles  per  hour  is  converted  to 

yards  per  minute  by  multiplying  by  the  fraction  --^. 
2.  A  cyclist  rides  at  the  rate  of  12  miles  per  hour.  In  what  time 

does  he  travel  100  yards  ? 

3.  A  body  travels  16^^  cms.  in  t  seconds.  What  is  its  mean 
velocity  in  the  4th  second,  and  its  velocity  at  the  end  of  4  seconds  ? 

4.  A  train  starts  from  rest  and  gets  up  a  velocity  of  40  miles  per 
hour  in  3  minutes.     Express  its  acceleration  in  feet  and  seconds. 

Motion  with  uniform  Acceleration.— The  case  of  a  body 
moving  in  a  straight  line  with  uniform  acceleration  is  one  of 

great  importance  and  must  be  considered  at  length. 

Symbols  used. — We  shall,  in  general,  in  all  formulae  and  ques- 
tions, use  the  following  symbols  in  the  senses  specified. 

u  denotes  the  initial  velocity  of  a  body,  that  is,  not  necessarily 

the  velocity  with  which  it  begins  to  move,  but  the  velocity 

which  it  has  at  the  beginning  of  any  observed  or  contemplated 
portion  of  its  motion. 

t  denotes  the  time  for  which  it  is  moving  for  any  contemplated 
portion  of  its  motion. 

a  denotes  its  acceleration. 

s  denotes  the  distance  through  which  it  travels. 

v  denotes  the  velocity  it  possesses  at  the  end  of  the  con- 
templated portion  of  its  motion. 

Convention  with  regard  to  Signs.— The  quantities  u,  v,  «,  s, 
which  are  quantities  having  direction  as  well  as  magnitude,  we 
shall  always  suppose  to  be  measured  in  one  definite  direction,  in 
one  sense  along  the  line  of  motion  (generally  in  the  sense  in 

which  the  body  is  moving).  If  one  of  these  quantities  happens, 
in  any  case,  to  be  in  the  other  sense,  the  corresponding  symbol 
will  be  of  the  negative  sign. 

Thus,  if  a  body  is  moving  along  a  straight  line,  and  we  agree 
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to  measure  the  quantities  in  the  direction  and  sense  of  its 

motion  ;  and  if  its  velocity  is  becoming  3  feet  per  second  less  in 

each  second,  we  should  say  that  its  acceleration  is  —  3  feet  per 
second  per  second. 

The  equations  connecting  these  symbols,  that  is,  the  equations 

referring  to  the  pure  motion  of  a  body,  without  any  reference  to 
the  cause  of  it,  are  called  kinematical  equations  or  formulae. 

Relation  between  u,  v,  a,  t. 

Since  the  velocity  is  increased  by  a  units  in  each  unit  of  time, 

.•.   in  ̂   units  of  time  it  is  increased  by  at  units. 
But  it  is  \i  units  to  begin  with. 

.'.   in  ̂   units  of  time  it  becomes  n-vat  units. 

?.e.,  'v  —  u-\-at   ..(1) 

Relation  between  s,  ?<,  v,  t. 
Since  the  velocity  increases  uniformly  its  time  average  (or  its 

mean  value)  is  half-way  between  its  initial  and  final  values,  that 
.     ..  .    u-\-v 
IS,  it  IS  . A 

The  distance  described  is  the  same  as  that  which  would  be 

described  in  the  same  time  with  the  mean  velocity.     Hence  we 

These  statements,  although  they  are  quite  correct,  hardly 
constitute  an  exact  proof  ;  because  it  has  not  been  proved  that 
the  distance  which  is  described  is  the  same  as  that  which  would 

be  described  with  a  velocity  equal  to  the  time  average  of  the 
velocity. 

Accordingly  the  following  exact,  but  more  troublesome,  proof 
is  given. 

For  clearness,  suppose  v  greater  than  u. 

The  proof  will  be  quite  similar  if  'V  is  less  than  ii. 
Imagine  the  time  t  divided  with  a  large  number,  w,  of  equal 

intervals,  each  equal  to  -. n 

Let  the  velocities  at  the  beginnings  of  these  intervals  be 

^'l»  ̂ 2^  %,   •••  'On- 
Vj  is  the  same  as  il 



196  ELEMENTARY  MECHANICS  OF  SOLIDS. 

The  n  +  l  quantities  u,  Vg,  v^y  ...  Vn,  v  increase  successively  by 
equal  increments,  so  that  v^  is  as  much  above  u  as  Vn  is  below  v. 

.*.     V2-hVn  =  U  +  V. 

So  Vs  +  Vn-l^U  +  V. 
And  so  on. 

Now  the  entire  distance  is  greater  than  the  distance  that 
would  be  described  if  the  body  moved  throughout  each  interval 
with  the  velocity  it  has  at  the  beginning  of  the  interval ;  and  it 
is  less  than  it  would  be  if  the  body  moved  throughout  each 
interval  with  the  velocity  it  has  at  the  end  of  the  interval. 

That  is,  s  is  greater  than 

n 
and  it  is  less  than 

(y+v„+  ...  +V3  +  ̂'2)-- 

.'.   the  error  made  by  taking  either  of  these  for  s  is  less  than 

their  difference  (v-u)-- 

By  taking  n  large  enough  we  can  make  this  quantity  as  small 
as  we  please.  Hence  the  true  value  of  the  distance  is  got  from 
either  of  the  above  expressions  by  making  n  indefinitely  great ; 
or  it  may  be  got  from  their  mean  value  by  making  n  indefinitely 

great. 
Now  the  mean  value  of  these  two  expressions,  got  by  com- 

bining the  first  terms  in  each,  then  the  second  terms,  and  so 
on,  is 

*.'  'V2  +  Vn  =  u  +  v,  V3  +  Vn-i=u+Vy  and  so  on. 

. ' .   mean  value  =    ̂      .  t. 

This  must  be  the  correct  value  for  the  distance  when  n  is 

made  indefinitely  large  ;  and  it  remains  the  same  whatever  n 
may  be. 

Hence  the  actual  value  of  the  distance  is  given  by 
s-^i±^    t 

I 
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Relation  between  u,  s,  a,  t. 

This  is  easily  obtained  from  the  last,  or  may  be  obtained 

independently  in  the  same  way  as  the  last. 

Since  v  =  u-\-aty 

and  8=\{u-\-v)t^ 

s=\{^u  +  at)t ; 

s  =  ut  +  ̂at^   ...(2) 
Relation  between  v,  s,  a,  t. 

This  is  obtained  in  much  the  same  way  as  the  last. 

Since  v^u-Yctt^ 

or  u=v  —  at, 

and  s=^\{i(,-\-v)t, 

s=^{2v-at)t 

=  vt  —  \at^.  ... 

Relation  between  t^,  v^  s,  a. 

v  —  u  +  at. 

.-.   v^=u^  +  2icat  +  aH'^ 
=  it^  +  2a(ut  +  ̂afi), 

v'^=u^  +  2as   (3) 
The  three  equations  marked  (1),  (2),  (3)  are  of  very  great 

importance.  They  ai'e  now  collected  for  convenience  of  refer- 
ence. 

v=u-t-at,   (1) 

s=ut+^at^   (2) 
v2=u2  +  2as   (3) 

The  two  others  which  have  not  been  numbered  are  sometimes 

useful,  but  they  are  of  less  importance.  They  may  be  called  (4) 
and  (5). 

s=i(u+v)t,   (4) 

s=vt-^at2   (5) 
These  we  will  call  the  5  kinematical  equations. 

The  equations  (1),  (2),  (3)  should  be  most  carefully  learned. 

They  are  all  that  are  necessary  for  doing  questions  about  recti- 
linear motion  with  uniform  acceleration.     Some  questions  may 

be  more  quickly  done  with  the  help  of  (4)  and  (5).     But  any 
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such  question  can  be  done  by  means  of  (1),  (2),  and  (3)  alone. 
It  is,  however,  convenient  to  know  (4)  and  (5),  and  they  are 

easily  remembered,  (4)  because  of  its  simplicity,  as  it  merely 
states  that  distance  is  equal  to  the  product  of  mean  velocity  and 

time,  and  (5)  by  means  of  its  similarity  to  (2). 
It  should  be  noticed  that  several  questions  on  formula  No.  (1) 

have  already  been  done,  these  questions  being  very  easily  done 

by  simple  arithmetic,  it  being  merely  necessary  to  remember 
clearly  what  acceleration  means.  The  connexion  between  the 

entire  velocity,  the  original  velocity,  the  time,  and  the  acceleia- 
tion,  or  rate  of  gaining  velocity,  is  now  expressed  in  an 
algebraical  formula. 

It  has  been  seen  that  (2),  (5),  and  (3)  are  not  algebraically 
independent  ones,  but  are  derived  from  (1)  and  (4). 

Other  equations  are  sometimes  given  referring  to  cases  in 
which  the  acceleration  is  in  the  direction  opposite  to  that  in 
which  s,  u^  and  v  are  measured.  But  it  is  recommended  to  use 

the  equations  given  above  only,  and  to  let  the  sense  of  the 
acceleration  be  in  all  cases  indicated  by  sign. 

Consider,  for  example,  the  following  question. 

Example. — A  body  begins  to  move  with  velocity  40  feet 
per  second,  and  has  an  acceleration  of  3  feet  per  second 

per  second  opposite  to  the  direction  of  motion  ;  how  far 
does  it  go  in  4  seconds  ? 

Here  we  should  use  the  equation  (3),  and  take  s  feet  to  be 
the  required  distance.  The  acceleration  is  a  negative 

quantity,  so  that  a  =  -  3. 

=  40.4  +  4(-3).42 =  136. 

Required  distance  is  136  feet. 

Again,  if  the  body  starts  from  rest,  u  =  0,  and  special  formulae 
may  be  obtained  from  those  given  above  by  writing  u  =  0\\\  them. 

Those  corresponding  to  (1),  (2),  (3)  are 
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These  should,  however,  not  be  legarded  as  new  formulae,  but 

merely  as  particular  cases  of  (1),  (2),  (3),  readily  obtained  by 

putting  the  pai'ticular  value  0  for  u. 
It  should  be  noticed  that  in  many  books  and  questions  the 

symbol  /  is  used  for  the  acceleration.  A  student  should,  there- 
fore, be  prepared  to  find  /  used  in  this  way  instead  of  a.  It 

seems,  howevei-,  more  natural  to  use  the  symbol  a  for  acceleration. 
The  other  quantities,  too,  are  not  always  denoted  by  the 

symbols  which  are  used  here.  For  example,  V  is  often  used  for 
the  initial  velocity. 

Summary. 

The  velocity  of  a  body  or  point  is  the  distance  passed  over  per 
unit  of  time. 

Uniform  velocity  is  measured  by  the  number  of  units  of  distance 
passed  over  in  any  unit  of  time. 

Variable  velocity  at  any  instant  of  time  is  measured  by  the  limiting 
value  of  the  fraction  got  by  dividing  the  distance  passed  over  in  a 
short  interval  of  time,  including  the  instant  in  question,  by  the 
interval,  when  the  interval  is  made  indefinitely  small. 

Acceleration  means  rate  of  increase  of  velocity,  or  increase  of 
velocity  per  unit  of  time.  In  British  units  it  is  expressed  as  so 
many  feet  per  second  per  second. 

Uniform  acceleration  is  that  of  a  body  whose  velocity  in  any  time 
increases  by  an  amount  proportional  to  the  time. 

For  the  motion  of  a  body  in  a  straight  line  with  uniform  accelera- 
tion the  symbols  u,  i\  t,  a,  s  are  used  for  initial  and  final  velocities, 

time,  acceleration,  and  distance. 

One  sense  along  the  line  of  motion  is  taken  as  the  positive  sense, 
and  each  of  the  quantities  u,  v,  a,  s  is  reckoned  positive  if  measured 
in  this  sense,  and  negative  if  measured  in  the  opposite  sense. 

The  equations  connecting  these  quantities  are  called  the  kine- 
matical  equations.     They  are 

v=u  +  at   (1) 

s=ut  +  ̂at2   (2) 
v2=u2  +  2as    (3) 

s  =  i(u  +  v)t   (4) 

s=vt-iat-   (5) 

Of  these  (1),  (2),  (3)  may  be  regarded  as  of  primary  importance, 
and  (4)  and  (5)  of  secondary  importance. 



CHAPTER  XIII. 

USE  OF  KINEMATICAL  EQUATIONS.     ACCELERATION 
DUE  TO  GRAVITY. 

General  Hints. — Some  general  hints,  which  will  probably  be 
found  useful,  will  now  be  given  for  the  use  of  the  equations. 

In  rough  work  jot  down  the  symbols  for  all  the  quantities 

given  and  the  quantity  required,  and  consider  what  equation 
connects  them.     From  this  equation  find  the  unknown  symbol. 

Example. — The  velocity  of  a  body  is  20  feet  per  second, 
and  it  has  an  acceleration  in  the  direction  of  its  motion  of 

8  feet  per  second  per  second.  How  far  will  it  travel  in 
2  seconds? 

[We  know  v,  a,  t.    We  want  s.    The  required  equation  is  No.  2.] 
Let  s  feet  be  the  required  distance. 

By  s  =  ut  +  ̂at'\ 
5  =  20.2  +  ̂ .8.22 =  56. 

Distance  is  56  feet. 

Example. — A  body  is  moving  with  a  velocity  of  10  cms.  per 
second.  It  has  an  acceleration  of  3  cms.  per  sec.  per  sec. 
opposite  to  the  direction  of  its  motion.  In  what  distance 

will  its  velocity  be  6  cms.  per  sec.  ? 

[We  know  u,  a,  v.     We  want  sJ] 

By  v^  =  u^  +  2as, 
62  =  102  +  2(-3)s. 

100-36 

Distance  is  10|  cms. 

6 

=  10§. 
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Example. — A  body  starts  from  rest,  and  in  2  minutes 
acquires  a  velocity  8  kilometres  per  second.  What  is  its 
acceleration  ? 

2  minutes  =120  sees. 

8  kilometres  per  sec.  =  8000  cms.  per  sec. 

[We  know  u^  t,  v.     We  want  a.] 

Let  the  acceleration  be  a  cms.  per  sec.  per  sec. 

By  v=u-\-at, 

8000  =  0  +  a.  120, 
«  =  66|. 

The  acceleration  is  66§  cms.  per  sec.  per  sec. 

This  question  could,  of  course,  be  easily  solved  without  an 
algebraical  formula. 

After  converting  the  time  and  the  velocity  we  may  go  on, 
thus  : 

Velocity  acquired  in  120  sees.  =  8000  cms.  per  sec. 

. ' .    vel.  acquired  in  1  sec.        =  66f  cms.  per  sec. 

Example. — After  a  body  has  been  moving  for  3  seconds  it 
is  observed  to  have  a  velocity  of  9  feet  per  second  and  has 
travelled  18  feet.     What  is  its  acceleration  ? 

[We  know  ̂ ,  y,  s.     We  want  a.     We  use  foimula  (5).] 

Let  a  ft.  per  sec.  per  sec.  be  the  acceleration. 

By  s  =  vt-\at:\ 

18  =  9.3-|a.32. 

2~^-
 

a  =  2. 

The  acceleration  is  2  feet  per  sec.  per  sec. 

We  shall  now  show  how  this  may  be  done  with  (1),  (2),  and 
(3)  alone.  We  shall  first  indicate  how,  in  general,  questions  to 

which  (4)  and  (5)  apply  may  be  solved  by  the  use  of  (1),  (2),  and 
(3)  only. 

In  rough  working,  jot  down  the  symbols  for  all  the  quantities 

given  and  the  quantity  required.     If  no  equation  [i.e.  among 
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(1),  (2),  (3)]  is  found  to  connect  them,  write  down  in  a  third 

place  the  symbol  for  another  unknown  quantity,  such  that 
two  connecting  equations  can  then  be  found. 

Thus,  taking  the  above  example. 
[We  know  t,  v,  s.     We  want  a.     Introduce  u. 

We  may  notice  that,  as  there  are  only  five  symbols  in  the 

equations,  and  as  t,  v,  s,  a  are  not  connected  by  any  of  the 

equations,  u  is  certainly  the  symbol  to  be  introduced.] 

Let  a  ft.  per  sec.  per  sec.  be  the  acceleration. 
Let  It  ft.  per  sec.  be  the  initial  velocity. 

By  v=u+at, 

and  s  =  ut+^afi, 
9  =  u  +  Sa, 

and  18  =  ̂ u+~. Z 

22*  +  3a=12. 

Solving,  we  get  3a =6, 
a  =  2. 

What  is  done  in  a  case  of  this  sort  is  to  write  down  two 

simultaneous  equations  in  two  unknown  quantities,  one  of  which 
is  the  quantity  we  require. 

It  was  best  not  to  use  (3)  because  this  contains  ii^. 

Example. — ^A  body  has  an  acceleration  of  4  cm. -sec.  units 
opposite  to  the  direction  of  its  motion.  At  a  certain 

instant  it  is  moving  with  a  velocity  of  20  cms.  per  sec. 
When  will  it  be  at  a  point  42  cms.  further  on  ? 

Let  t  sees,  be  the  required  time. 

By  s  =  ut-\-\at^, 

42=20«:  +  ̂(-4).ij2, 
«2-10iJ  +  21=0, 

^=3,     or    =7. 

The  required  time  is  3  sees,  or  7  secs. 

The  meanings  of  the  two  results  obtained  in  this  case  should 

be  carefully  noticed.     They  are  both  correct,  and  both  should 

be  given. 
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Since  the  acceleration  is  opposite  to  the  direction  of  motion 

the  velocity  diminishes,  becomes  zero,  and  then  changes  sign. 

Tlie  body  now  turns  and  passes  through  its  old  positions,  and 
in  7  sees,  from  the  observed  instant  it  is  at  the  same  point  as  it 
was  4  sees,  before,  or  at  3  sees,  from  the  observed  instant. 

Example. — A  body  has  an  acceleration  of  7  foot-second 
units  opposite  to  the  direction  of  its  motion.  At  a 
certain  instant  it  is  moving  with  a  velocity  of  12  feet 

per  second.     When  and  where  will  it  stop  ? 

Let  t  sees,  be  the  time  in  which  the  body  stops  ;  and  s  feet 

the  distance  from  the  point  at  which  it  was  observed. 

Then,  by  v  =  u  +  at, 
0  =  12  +  (-7)^, 
^  =  Jf  =  lf 

By  v'^=ifi-\-1as, 
02  =  12-  +  2(-7)s, 

The  body  will  stop  in  If  sees,  after  the  instant  at 
which  it  is  observed,  and  will  have  travelled  lOf  feet. 

Example. — A  body  stai'ts  with  a  velocity  of  25  units  and 
has  an  acceleration  of  5  units.  In  the  n^^  unit  of  time 
after  starting  it  is  observed  to  move  through  47^  units  of 
distance.     Find  n. 

Distance  in  n  units  of  time        =  25?i  -\-\  .b  .n^. 

Distance  in  {n-\)  units  of  time  =  25(^i-l)  +  ̂  .  5  .  {n-lf. 

.-.    distance  in  n^^  unit  of  time  =25  +  ̂  .  5(2?i-l)  =  57^  +  22^. 

.-.    57i  +  22^  =  47^. 
n  =  b. 

Many  questions  occur  which  cannot  be  solved  by  a  simple 
application  of  the  equations  to  one  part  of  the  motion.  The 
following  is  an  example. 

Example. — A  body  starts  from  rest  with  uniform  accelera- 
tion. After  it  has  been  moving  for  some  time  it  is 

observed  to  travel  72  feet  in  2  seconds ;  and  it  then  has 
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a  velocity  of  42  feet  per  second.     How  long  was  tlie  body 
moving  before  the  72  feet  began  to  be  described  ? 

Let  t  seconds  be  the  time  required. 

Let  a  feet  per  second  per  second  be  the  acceleration. 

By  s=vt-\at\ 

72  =  42.  2-^.  a.  22. 
2a  =  84 -72, 
a=6. 

Velocity  at  the  end  of  t  seconds  is  6^  feet  per  sec. 

.*.  by  s  =  2a  +  ̂at^, 
72  =  6^5.2  +  ̂ .6.22, 

12i;  =  72-12, 
t  =  5. 

The   body   moves   for    5    seconds   before   it   begins   to 
describe  the  72  feet. 

Notice  that  we  have  quoted  the  standard  formula,  s  =  ut+^at^; 
but  have  employed  ̂   in  a  different  sense  in  the  working.  This 
need  introduce  no  confusion.  The  formula  is  only  quoted  that 

we  may  have  before  our  eyes  the  necessary  relation  between  the 

initial  velocity  in  any  part  of  the  motion,  the  time  of  that  part, 
etc. ;  and  in  the  second  part  of  the  motion,  to  which  we  wish  to 

apply  this  formula,  we  know  that  the  time  is  2  seconds,  and 

that  the  initial  velocity  is  6t  feet  per  second,  t  meaning,  as 

stated,  the  number  of  seconds  up  to  the  beginning  of  this  part. 

Example. — A  body  known  to  be  moving  with  uniform 
acceleration  passes  a  point  A,  and  at  3,  5,  and  8  seconds 

later  it  passes  the  points  B,  (7,  JD.  BC  is  56  cms.,  and 
CD  is  129  cms.    With  what  velocity  did  the  body  pass  A  ? 

Let  u  cms.  per  sec.  be  the  velocity  at  B^  and  a  cms.  per  sec. 
per  sec.  the  acceleration  of  the  motion. 

By  the  formula  s=ut  +  \at\  applied  to  the  path  BC, 

56  =  'i*.2  +  ̂ a.22; 

or  ^  +  a=28,    (1) 

I 
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Since  BD =185  cms.,  and  BD  is  passed  over  in  5  seconds, 

by  the  formula  s=ut-{-^at\ 

185  =  ?^.  5  +  ̂a.  5-; 

or  2w  +  5a  =  74   (2) 

Combining  (1)  and  (2)  we  get 

a=e,   11=22. 

The  body  passes  A  3  seconds  before  it  passes  B ; 

.'.    velocity  at  ̂   =(22  —  3  .  6)  ft.  per  sec. 
=4  feet  per  second. 

Exercises  XIII.  a. 

Find  the  uniform  accelerations  of  the  bodies  in  the  following 
eight  cases : 

1.  Velocity  of  20  feet  per  second  becomes  30  feet  per  second  in 
3  seconds. 

2.  Velocity  of  20  cms,  per  second  becomes  16  cms.  per  second 
in  8  seconds, 

3.  Starting  from  rest  acquires  velocity  of  4  cms.  per  second  in 
8  minutes. 

4.  Has  velocity  of  10  yards  per  second  and  comes  to  rest  in  half 
an  hour. 

5.  Velocity  increased  by  4  feet  per  second  in  every  minute. 

6.  Velocity  of  1000  feet  per  second  lost  in  5^  second. 
7.  Velocity  of  60  miles  per  hour  lost  in  2  minutes, 
8.  Has  velocity  of  40  feet  per  second  and  comes  to  rest  in 

yV  second, 
9.  A  body  starts  from  rest  with  an  acceleration  of  6  feet  per 

second  per  second.     How  long  will  it  take  to  travel  48  feet  ? 
10.  A  body  is  moving  with  a  velocity  of  6  cms,  per  sec.  and  an 

acceleration  of  2  cms.  per  sec.  per  sec.  opposite  to  the  direction  of 
its  motion.  Show  that  it  will  be  8  cms,  further  on  in  2  or  in  4 
seconds.     Explain  the  two  results. 

11.  What  must  be  the  initial  velocity  of  a  body  if  it  has  an  accel- 
eration of  6  units  and  travels  81  units  of  distance  in  3  units  of  time? 

12.  A  diver  strikes  the  water  with  a  velocity  of  24  feet  per  second, 
and  ceases  to  sink  at  4  feet  below  the  surface.  What  is  the  mean 
retardation  in  the  water  of  his  downward  velocity  ? 

13.  A  carriage  set  rolling  comes  to  rest  in  36  feet,  while  it  loses 
velocity  at  the  rate  of  1  foot  per  second  in  each  second.  What  was 
its  velocity  at  first  ? 
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14.  A  railway  train  slows  down  to  rest  with  uniform  retardation 
of  its  velocity  in  80  seconds ;  and  during  that  time  it  travels  2000 
feet  ?    At  what  rate  was  it  going  ? 

15.  A  boy  starts  to  slide  with  a  velocity  of  12  feet  per  second 
and  slides  24  feet.  Find  the  acceleration  of  his  motion,  supposed 
uniform,  and  the  time  for  which  he  is  sliding. 

16.  A  boat  is  observed  to  be  moving  in  the  water  with  a  velocity 
of  15  feet  per  second.  Its  velocity  falls  off  uniformly,  and  in  5  sees, 
it  has  travelled  50  feet.     What  is  its  velocity  then  ? 

17.  A  carriage  on  rails,  slowing  down  uniformly,  passes  over  36  feet 
in  12  seconds.  It  then  passes  over  12  feet  more  before  coming  to  rest. 
Show  that  its  velocity  at  the  beginning  of  the  36  feet  was  4  feet  per 
second. 

18.  A  bullet  traverses  a  2  in.  plank,  and  its  velocity  is  changed  in 
doing  so  from  1200  to  950  feet  per  sec.  What  is  the  mean  rate  of 
diminution  of  its  velocity,  and  in  what  time  does  it  pass  through  ? 

19.  The  velocity  of  a  train  is  reduced  from  60  to  30  miles  per 
hour  in  200  yards.     In  how  many  more  feet  will  it  come  to  rest  ? 

20.  A  body  moves  through  7  feet  in  2  seconds  ;  and  comes  to  rest 
in  3  seconds  more.     What  is  its  acceleration  ? 

21.  A  body  moves  through  50  cms.  in  10  sees.,  and  through  32 
cms.  in  the  next  10  sees.  In  how  many  more  seconds  will  it  come 
to  rest  ? 

22.  A  body  starts  from  rest  and  moves  through  90  cms.  and  in 
the  next  second  it  moves  through  32^  cms.  How  long  has  it  been, 
moving  altogether  ? 

23.  A  body  moves  through  11  feet  in  3  seconds.  10  seconds  elapse, 
and  it  moves  through  50  feet  in  the  next  3  seconds.  If  its  accelera- 

tion has  been  uniform  the  whole  time  find  it. 

24.  A  bullet  strikes  a  tree  with  a  velocity  of  1400  feet  per  second 
and  lodges  after  penetrating  4  inches.     What  is  its  acceleration  ? 

Acceleration  due  to  Gravity. — It  is  found  by  experiment 

that  any  body  moving  under  the  action  of  gravity  or  the  attrac- 
tion of  tbe  earth  alone,  that  is,  falling  freely  under  the  action 

of  its  own  weight,  undergoes  an  acceleration  which,  in  a  given 

locality,  is  practically  uniform.  It  varies  a  little  from  one  part  to 

another  of  the  earth's  surface,  and  also  to  a  very  slight  extent 
with  the  altitude. 

In  practice,  whenever  a  body  is  let  fall,  it  is  under  the  action 
of  a  resistance  due  to  the  air,  and  the  effect  that  this  produces 

on  the  acceleration  due  to  gravity  varies  according  to  the  size, 

shape,  and  density  of  the  body.     When  the  resistance  of  the  air 

I 
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is  got  rid  of,  so  that  the  acceleration  is  due  to  gravity  alone,  it  is 
found  to  be,  in  one  given  place,  precisely  the  same  for  all 
bodies. 

Value  of  Acceleration  due  to  Gravity.— The  acceleration 
due  to  gravity,  expressed  in  foot-second  units  of  acceleration, 

varies  from  about  32*09  at  the  equator  to  32*25  at  the  poles.  In 

the  latitude  of  London  it  is  about  32*2,  This  expressed  in  centi- 
metre-second units  is  about  981. 

In  formulae  it  is  usual  to  expi'ess  the  value  of  the  acceleration 
due  to  gravity  by  means  of  the  symbol  g,  whatever  may  be  the 
units  used,  or  the  jaarticular  value  of  the  acceleration  at  the 

locality  in  question. 

In  numerical  examples  where  no  value  is  specified  g  is  always 
to  be  taken  as  32  when  feet  and  seconds  are  used,  and  as  981 
when  centimetres  and  seconds  are  used. 

In  the  kinematical  equations,  when  they  are  used  to  refer  to 
the  motion  of  a  body  under  the  action  of  its  own  weight  in  a 

vertical  straight  line,  if  distances,  etc.,  are  measured  downwards 

a  must,  of  course,  be  replaced  by  g,  or  the  number  for  which  g 

stands  ;  if  distances,  etc.,  are  measui-ed  upwards,  a  must  be 
replaced  by  -g. 

Example. — A  body  is  let  fall.  How  far  does  it  descend  in 
the  first  and  in  the  second  seconds  of  its  motion  ? 

By  the  equation       s=^ut-\-\  af^ 

No.  of  feet  in  1  sec.  -^  .  32  .  1^=  16  ; 

No.  of  feet  in  2  sees.  =  ̂   .  32  .  22  =  64. 
Thus        distance  in  1st  sec.     =16  feet ; 

distance  in  2nd  sec.    =  48  feet. 

Example. — A  stone  is  thrown  up  with  a  velocity  of  40  feet 
per  second.  In  what  time  will  it  be  16  feet  above  the 

point  from  which  it  was  thrown  ?  Interpret  the  two 
results. 

Let  t  seconds  be  the  required  time. 

By  s=ut-\-\at'^^ 
16  =  40.  ̂ -|.  32.^2 

=  40^-16^2, 
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2«J2_  5^  +  2-0, 

(^-2)(2^-l)  =  0, 
^  =  1    or  =2. 

The  stone  will  be  at  the  point  in  question  in  |  sec.  and  in 
2  sees. 

At  the  end  of  half  a  second  it  will  have  first  reached  the 

point ;  at  the  end  of  two  seconds  it  will  have  ascended  to 
its  highest  point,  and  will  have  just  reached  the  given 

point  on  its  way  down. 

Example, — A  body  is  thrown  up  with  a  velocity  of  32  feet 
per  second.     How  high  will  it  rise  ? 

The  body  will  rise  till  its  velocity  is  for  an  instant  zero. 
After  this  it  will  fall. 

Let  s  feet  be  the  distance  through  which  the  body  will  rise. 

By  v^=u^  +  2as, 

0  =  (32)2  +  2(-32)«. 

2.32 

The  body  will  rise  16  feet. 

16. 

The  Case  of  a  Body  thrown  upwards. — Suppose  a  body  is 

thrown  upwards  with  velocity  T''  (any  system  of  units  being used). 

Let  s  be  the  height  to  which  it  rises,  and  t  the  time  taken  in 
rising. 

It  rises  till  its  velocity  becomes  0. 

.'.  by  v^=u^+2as, 

By  v=u  +  at, 
0=V+{-g)t, 

V 

9 
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Let  r'  be  the  velocity  on  reaching  the  starting  point,  and  t 
the  time  taken  in  falling. 

Then,  since  the  body  has  to  fall  a  distance  -    ,  by 
v  =  2as, 

And  by 

Y'l^ 
=  2a    iZ 

Y'-- 

=  r. 

s  = 

=  ut-\-\at\ 

72 

^O-^lgt"'. 

f^-- 

t'-- 

J~=t. 

Thus,  we  have  found  expiessions  for  the  height  to  which  the 
body  rises,  and  the  time  of  rising.  But  it  is  not  recommended 
that  an  attempt  should  be  made  to  commit  these  to  memory. 

Practice  in  readily  deducing  them  from  the  kinematical  equa- 
tions should  be  acquired. 

It  is,  however,  very  useful  to  remember  the  two  results, 

(i.)  that  the  velocity  on  reaching  the  starting  point  is  equal  to 
that  of  starting,  (ii.)  that  the  time  of  coming  down  is  equal  to 
that  of  going  up. 

Exercises  XIII.  b. 

\.  A  stone  dropped  from  a  cliff  takes  4 J  sees,  to  reach  the  bottom. 
What  is  the  height  of  the  clilf  ? 

2.  A  stone  is  thrown  upward  with  a  velocity  of  30  metres  p«r 

second.  Show  that  in  4  seconds  it  will  be  exactly  41  "52  metres 
above  the  point  of  projection.  And  show  that  the  other  time  at 
which  it  is  at  the  same  point  is  about  1\  seconds  after  the  instant 
at  which  it  was  thrown  up. 

3.  A  body  is  thrown  up  with  a  velocity  of  48  feet  per  second. 
How  high  does  it  rise  ? 

4.  A  bqdy  is  thrown  up  with  a  velocity  of  48  feet  per  second.  In 
what  time  does  it  reach  the  ground  ? 

5.  A  body  thrown  downward  descends  784  feet  in  3  seconds. 
With  what  velocity  was  it  thrown  down  ? 
E.s.  0 
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6.  A  stone  was  thrown  up  and  reached  the  ground  in  4  seconds. 
How  high  did  it  rise  ? 

7.  A  stone  falls  through  800  feet  in  one  second  of  its  motion. 
How  long  has  it  been  falling  before  ? 

8.  A  stone  is  dropped  into  a  well  56  feet  deep.  Sound  travels  ab 
the  rate  of  1100  feet  per  second.  In  what  time  after  letting  the 
stone  fall  is  the  splash  heard  ? 

9.  With  what  velocity  must  a  body  be  thrown  up  so  as  to  reach 
a  height  of  121  feet  ? 

10.  A  bullet  shot  vertically  upwards,  and  supposed  to  have 
uniform  downward  acceleration  of  32  foot-second  units,  passes  a  point 

'  whose  altitude  is  5600  feet  5  seconds  after  it  starts.     For  how  long 
does  it  rise,  and  how  high  does  it  go  ? 

11.  A  stone  is  dropped  from  the  top  of  a  tower  100  feet  high,  and 
at  the  same  instant  another  is  thrown  up  from  the  bottom  with 
a  velocity  of  80  feet  per  second.  When  and  where  will  they 
meet? 

12.  For  how  many  seconds  must  a  body  have  been  moving  from 
rest  with  uniform  acceleration  of  32  feet  per  second  per  second  in 
order  to  describe  1840  feet  in  the  next  second  ? 

13.  How  far  has  a  body  moved  from  rest  with  8  cm, -sec.  units  of 
acceleration  if  it  will  pass  over  132  cms.  in  the  next  second  ? 

14.  A  stone  is  dropped  from  a  height  ;  and  2  seconds  later  another 
is  thrown  vertically  down  with  a  velocity  of  128  feet  per  second.  In 
what  time  will  this  overtake  the  first  and  at  what  depth  ? 

15.  A  stone  is  dropped  into  a  well  and  the  splash  is  heard  3^ 
seconds  later.  Sound  travels  at  1100  feet  per  second.  Find,  to  the 
nearest  foot,  the  depth  of  the  well  ? 

16.  A  body  having  a  velocity  of  4  units  at  a  given  point  is  under  a 
constant  acceleration  of  2  units  opposite  to  the  direction  of  motion. 
How  far  will  it  be  from  this  point  when  its  velocity  is  6  units  in  the 
direction  of  the  acceleration  ? 

17.  A  body  moving  with  uniform  acceleration  passes  over  6600 
yards  in  10  minutes  ;  at  the  end  of  the  distance  it  has  a  speed  of  30 
miles  an  hour.  What  was  the  speed  at  the  beginning  of  the  distance? 
(Coll.  Precep.,  1897.) 

18.  Find  the  height  to  which  a  body  will  rise  when  thrown 
vertically  upwards  with  a  velocity  of  490  centimetres  at  a  place 
where  gr  =  980.    (Coll.  Precep.,  1898.) 

19.  A  particle,  moving  from  rest  with  uniform  acceleration, 
passes  over  38  feet  in  the  10th  second  of  its  motion.  Over  what 
space  will  it  pass  during  the  15th  second  ? 
What  is  its  average  velocity  during  the  15th  second  ?  (Oxford 

Ifocals,  1899.) 
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20.  A  and  B  are  two  points  in  a  vertical  line  ;  A  being  64  feet 
above  B.  A  body  is  let  fall  from  A,  and  half  a  second  afterwards 
another  body  is  let  fall  from  B ;  show  that  the  former  body  will 
overtake  the  latter,  and  find  at  what  distance  below  B  it  will  do  so. 
(Science  and  Art,  1897.) 

21.  A  body  falling  freely  has  a  velocity  Fat  a  certain  instant  ;  in 
three  seconds  from  that  instant  it  falls  through  a  distance  a,  and 
in  six  seconds  from  that  instant  it  falls  through  a  distance  b  ;  if  the 
ration  of  a  to  6  equals  that  of  4  to  13,  find  V.  (Science  and  Art, 
1898.) 

22.  Write  down  the  formula  which  expresses  the  time  taken  by  a 
body,  moving  with  uniform  acceleration  /,  in  passing  over  a  space  s 
from  rest. 

Neglecting  the  resistance  of  the  air,  find  the  time  taken  by  a  body 

in  falling  from  the  top  of  the  Eifi'el  Tower,  300  metres  high.  {N.B. 
—A  metre  =  3-281  feet.)     (Science  and  Art,  1898.) 

23.  Define  acceleration  and  explain  clearly  what  is  meant  by  an 
acceleration  of  5  feet  per  second  per  second. 

Express  an  acceleration  of  880,000  feet  per  hour  per  hour  in  miles 
per  minute  per  minute.     (Oxford  Locals,  1897.) 

24.  Two  bodies  start  from  rest  with  uniform  acceleration,  and 
acquire  a  velocity  of  400  yards  per  minute,  one  after  travelling  400 
yards,  the  other  after  moving  for  a  minute.  Find  their  accelera- 

tions in  feet  per  second  per  second.     (Oxford  Locals,  1898. ) 

25.  While  a  train  is  travelling  at  the  rate  of  40  miles  an  hour,  the 
brakes  are  put  on  and  the  train  is  brought  to  rest  with  a  uniform 

retardation  after  moving  over  a  distance  of  |^  of  a  mile.  Find  what 
time  elapses  before  the  train  comes  to  rest,  and  what  is  the 
retardation.     (Camb,  Jr.  Loc.,  Mech.,  1896.) 

Summary. 

Questions  involving  the  use  of  the  kinematical  equations  may  be 
solved  by  writing  down  the  symbols  for  the  quantities  that  are 
given  and  for  the  one  required,  and  then  selecting  the  equation 
which  connects  them. 

Questions  involving  the  use  of  equations  (4)  and  (5)  can  also  be 
solved  by  using  (1),  (2),  and  (3)  only,  introducing  a  symbol  which  is 
not  given  or  required,  and  selecting  two  equations  from  (1),  (2),  and 
(3),  connecting  the  required  symbol  and  the  introduced  symbol 
twice  over  with  the  given  quantities,  and  then  solving. 

The  Acceleration  due  to  Gravity  is  a  uniform  vertically  downward 
acceleration. 

In  questions  about  the  motion  of  bodies  in  vertical  straight  lines 
Vinder  the  action  of  their  weights,  the  kinematical  equations  should 
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be  used  with  the  value  of  this  acceleration  instead  of  a  ;  the  +  or  - 
sign  be  used  according  as  the  quantities  are  measured  downwards  or 
upwards. 

In  the  case  of  a  body  thrown  vertically  upwards,  the  following 
results  should  be  remembered  : 

(i. )  The  velocity  on  reaching  the  starting  point  is  equal  to  that 
of  starting, 

(ii. )  The  time  of  coming  down  is  equal  to  the  time  of  going  up. 



CHAPTER  XIV. 

DYNAMICAL  MEASUKE  OF  FORCE. 

NEWTON'S  FIRST  AND  SECOND  LAWS  OF  MOTION. 

The  Measure  of  a  Force. — In  Statics  forces  are  compared 
with  each  other.  The  measure  of  a  force  is  the  number  of  times 

that  it  contains  some  standard  force,  such  as  the  weight  of  a 

pound.  And  two  forces  are  said  to  be  equal  if  they  balance  each 

others'  tendencies  when  acting  in  opposite  senses  along  the  same 
straight  line. 

In  Dynamics  a  force  is  measured  independently  of  other  forces ; 
it  is  measured  by  reference  to  quantities  which  are  not  forces  ; 

it  is  estimated  by  its  effect  in  producing  motion  in  a  body. 
In  practice  it  almost  always  happens  that  when  a  body  is 

moved  in  any  way  its  weight  causes  some  resistance  to  the 
motion.  If  the  body  is  lifted  the  weight  is  directly  opposed  to 
the  lifting  effort ;  if  it  is  pushed  along  on  a  horizontal  surface  the 

weight  causing  it  to  press  on  the  surface  produces  a  friction  force 

that  has  to  be  overcome.  But  even  if  the  weight  could  be  en- 
tirely got  rid  of  every  body  would  offer  a  resistance  to  being  set 

in  motion. 

Inertia. — It  is  a  matter  of  common  experience  that  it  is 
more  difficult  to  set  a  heavy  body  in  motion  than  a  light  one. 

Imagine  two  carriages,  a  heavy  one  and  a  light  one,  on  very  good 

smooth  wheels  and  placed  on  a  very  smooth  level  horizontal  sur- 
face. It  is  harder  to  set  the  heavy  one  moving  by  a  short  quick 

push  than  the  light  one.  The  difference  in  the  weights  has 
something  to  do  with  this,  it  is  true  ;  because  the  difference  in 

the  weights  causes  a  difference  in  the  friction  forces  which  oppose 
the  motions.     But  the  friction  may  be  made  extremely  small  and 
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still  a  very  obvious  difference  in  the  difficulty  of  setting  the  two 
in  motion  remains. 

Again,  if  the  two  carriages  are  moving  with  the  same  velocity 

it  is  more  difficult  to  stop  the  heavy  one.  This  time  the  greater 
friction  would  assist  the  effort  applied  to  the  heavy  carriage. 

But  still  a  greater  effort  has  to  be  applied  to  the  heavier  one. 
A  similar  experiment  may  be  tried  by  suspending  two  different 

masses  at  the  ends  of  long  strings.  Suppose  a  14-lb.  weight  and 
a  56-lb.  weight  be  each  suspended  by  a  cord  20  feet  long.  If  one 
of  these  be  then  pulled  an  inch  or  so  away  from  its  position  of 
rest  the  horizontal  pull  necessary  to  hold  it  in  its  new  position, 
that  is,  to  overcome  the  statical  action  of  its  weight  is  very  small 

indeed.  And  friction  is  almost  completely  eliminated.  But  it 
will  be  found  much  more  difficult  to  move  the  56  lbs.  about  hori- 

zontally by  short  sharp  jerks  than  to  do  the  same  to  the  14  lbs. 
Thus,  every  body  resists  the  action  of  a  force  tending  to  set  it 

in  motion,  or  to  stop  its  motion,  simply  because  it  is  a  material 
body  and  without  any  reference  to  any  other  forces  that  may 

already  be  acting  upon  it  and  which  have  to  be  overcome. 

The  inertia  of  a  body  is  the  property  in  virtue  of  which  it  re- 
sists the  action  of  forces  tending  to  change  its  state  of  motion  : 

or  it  is  the  measure  of  the  difficulty  of  changing  its  state  of 
motion. 

The  mass  of  a  body  is  sometimes  said  to  be  the  quantity  of 
matter  in  it  :  it  is  the  same  as  its  inertia  ;  or  it  is  a  measure  of 

the  difficulty  of  affecting  the  state  of  motion  of  the  body.  And 

the  only  direct  way  of  measuring  a  mass  by  means  of  a  standard 
of  mass  or  of  comparing  two  different  masses  with  each  other  is 
by  comparing  the  actions  of  forces  on  them. 

We  have  seen  that  a  body  resists  the  action  of  force  tending  to 
set  it  in  motion  ;  and  in  the  case  of  a  body  moving  on  a  smooth 
surface  we  have  seen  that  it  resists  the  action  of  force  tending  to 

bring  it  to  rest.  If  left  alone  its  velocity  would  gradually  fall  off 
and  it  would  come  to  rest.  If  the  surface  were  made  smoother, 

so  that  the  force  opposing  the  motion  is  diminished,  it  would 

move  for  a  longer  time,  and  would  ultimately  come  to  rest.  The 
smaller  we  make  the  opposing  force  the  more  slowly  does  the 

velocity  change.  In  practice  it  is  impossible  to  entirely  remove 

the  opposing  force ;  in  an  experiment,  even  if  the  surface  could 

I 
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be  made  perfectly  smooth,  so  as  entirely  to  get  rid  of  friction, 
we  should  have  the  resistance  of  the  air  acting  on  the  body ;  but 

by  getting  rid  of  all  resistances  as  far  as  possible  we  can  make 
the  rate  at  which  the  velocity  of  the  body  falls  off  very  small 
indeed. 

This  leads  us  to  expect  that,  if  a  body  could  be  set  in  motion 

and  entirely  removed  from  the  action  of  all  forces,  it  would  con- 
tinue to  move  in  just  the  same  manner  for  ever.  This  is  ex- 

pressed in  the  following  : 

Newton's  First  Law  of  Motion.— Every  body  continues 
in  a  state  of  rest  or  of  uniform  motion  in  a  straight  line, 
except  in  so  far  as  it  is  compelled  to  change  that  state  by 
external  impressed  force. 
We  have  seen  that  the  direct  evidence  for  this  is  not  complete 

and  cannot  be  made  so.  It  is  impossible  to  experiment  on  a 
body  completely  removed  from  the  action  of  forces ;  as  far  as 

diiect  evidence  goes  we  can  only  say  that  the  more  nearly  we 
approach  the  conditions  contemplated  in  the  law  the  nearer  do 
we  get  to  a  state  of  motion  with  uniform  velocity. 

Evidence  on  which  Newton's  Laws  rest.— But  we  may 
say  for  this  and  for  the  other  two  laws  of  motion  that  the  chief 

evidence  on  which  they  rest  is  indirect.  Especially  from  Astro- 
nomical observations  is  this  evidence  obtained.  The  laws  of  the 

motions  of  the  heavenly  bodies  are  based  on  Newton's  laws  of 
motion,  and  could  not  hold  unless  these  were  true.  And  continual 

observations  on  these  bodies  are  always  proving  with  what  exact- 
ness the  laws  are  obeyed. 

Relation  between  Force  acting  and  Mass  moved.— We 
shall  now  consider  more  particularly  the  relation  between  the 

force  acting  on  a  mass,  the  mass  and  the  way  in  which  it  is 
moved. 

If  a  force  acts  on  a  mass  entirely  removed  from  the  action 

of  other  forces,  it  gives  to  it  a  velocity  which  increases  as  long  as 
the  force  acts,  and  is  proportional  to  the  time  for  which  the  force 
acts.  That  is,  the  force  produces  in  the  mass  a  constant 
acceleration. 

If  the  force  is  doubled  the  acceleration  will  be  doubled;  if 

trebled,  trebled  ;  and  so  on.  That  is,  for  a  given  mass,  the  force 

is  proportional  to  the  acceleration  which  it  produces. 
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If  another  mass  is  found  in  which  the  same  force  as  acted  on 

the  first  produces  the  same  acceleration,  this  mass  must  be  con- 

sidered equal  to  the  first.  And  if  the  two  masses  be  put  to- 
gether so  as  to  obtain  one  double  of  the  first,  the  force  necessary 

to  produce  a  given  acceleration  must  be  doubled.  If  the  mass  is 
trebled  the  force  must  be  trebled,  and  so  on.  That  is,  the  force  is 

proportional  to  the  mass,  when  a  given  acceleration  is  always 

produced. 

Putting  these  two  results  together  we  see  that  the  force  is  pro- 
portional to  the  product  7nass  x  acceleration. 

This  result  may  be  put  in  another  way  by  using  a  new  term,  of 
which  the  definition  will  now  be  given. 

Momentum. — The  momentum  of  a  body  is  the  product  of  its 
mass  and  its  velocity. 

Thus  if  the  mass  is  m  units  and  the  velocity  v  units,  the 

units  in  terms  of  which  the  quantities  are  measured  being  any 
whatever,  the  corresponding  measure  of  the  momentum  is  7nv. 

Now  suppose  at  the  same  time  that  the  body  has  an  accelera- 
tion a.     Its  increase  of  the  momentum  in  time  t  is 

7)i{v  -\-  at)  -  mv  =  9nat. 

.*.  rate  of  increase  of  momentum,  or  increase  per  unit  of 
time,  is  ma. 

We  can  thus  write  the  lesult  that  force  is  proportional  to  the 
product  of  mass  and  acceleration  in  the  following  form. 

Force  is  proportional  to  the  rate  of  change  of  momentum 
which  it  produces. 

This  is  expressed  in  the  following  : 

Newton's  Second  Law  of  Motion. — Rate  of  change  of 
momentum  is  proportional  to  the  acting  force,  and  takes 
place  in  the  direction  in  which  the  force  acts. 
We  have  not  yet  fixed  upon  any  method  of  measuring  mass, 

or  any  unit  in  terms  of  which  to  measure  it.  For  this  we  may 

use  the  pound.  Suppose  at  the  same  time  that  we  use  the  foot 
and  second  as  units  of  length  and  time.  Let  m  and  a  be  the 
mass  and  acceleration  of  a  body  measured  in  these  units.  Then 

the  force  acting  on  it  must,  in  whatever  units  of  force  it  may  be 

measured,  be  proportional  to  Tna.  That  is,  if  the  number  of 
units  of  force  acting  on  the  mass  is  changed,  the  product  ma 

must  be  changed  in  the  same  ratio. 
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Dynamical  Measure  of  Force.  —We  have  now  to  fix  upon  the 
unit  of  force  which  is  the  most  convenient  measure  of  forces  in 

dynamical  questions. 

Suppose  that  a  force  acting  on  m  lbs.  produces  a  foot-second 
units  of  acceleration.  The  number  of  units  in  the  force,  whatever 

the  unit  of  force  may  be,  is  always  proportional  to  ma.  We  may 
so  choose  our  unit  as  to  make  the  number  of  units  in  the  force 

equal  to  ina.  For  since  the  numerical  measure  of  the  force 

always  bears  the  same  i-atio  to  ma,  if  we  arrange  so  that  it  shall 
be  equal  to  ma  for  some  particular  values  of  m  and  a,  it  will 
always  be  equal  to  ma. 

For  this  purpose  we  take  the  unit  of  force  to  be  that  force 

which  produces  in  a  pound  mass  an  acceleiation  of  one  foot  per 
second  per  second. 

Then  the  number  of  units  of  force  producing  acceleration 
a  feet  per  second  per  second  in  m  pounds  is  ma. 

The  unit  of  force  so  chosen  is  called  the  poundal. 

If,  then,  a  force  of  f  poundals  acts  on  a  mass  of  m  lbs.,  and 

produces  a  foot-second  units  of  acceleration,  we  have  the  relation 
f  =  ma. 

This  is  the  fundamental  equation  of  Dynamics. 

The  force  one  poundal  may  be  defined  in  several  ways. 

(1)  It  is  the  force  which  gives  to  one  pound  a  foot-second 
unit  of  acceleration. 

(2)  It  is  the  force  which,  acting  on  a  pound  for  one  second, 
gives  to  it  a  velocity  of  one  foot  per  second. 

(3)  It  is  the  force  which  produces  a  foot-pound-second 
unit  of  momentum  per  second. 

With  regard  to  the  third  method  of  defining  the  poundal, 

notice  that  the  momentum  pi-oduced  by  it  in  a  second  is  always 
the  same,  on  whatevei-  mass  it  may  act.  If  the  mass  is  increased 

the  velocity  genei-ated  will  become  less,  and  dice  versa.  But  the 
product  of  the  mass  in  pounds  and  the  velocity  in  feet  per  second, 

generated  in  one  second,  when  a  given  force  acts,  is  always  the 
same  ;  and  if  this  force  is  one  poundal,  the  product  is  unity. 

That  is,  the  momentum  generated  in  a  second  by  a  poundal 
in  any  mass  whatever  is  a  unit  of  momentum. 

Absolute  Unit  of  Force. — If,  instead  of  using  the  foot, 
pound  and  second  as  the  units  of  length,  mass  and  time,  any 



218  ELEMENTARY  MECHANICS  OF  SOLIDS. 

othei-  units  of  these  quantities  be  used,  a  corresponding  unit  of 
force  would  be  obtained.  Any  such  units  of  length,  mass,  and 

time  which  may  be  chosen  arbitrarily  are  called  fundamental 
units.  The  corresponding  unit  of  force  is  called  the  absolute 

unit  of  force  for  the  given  system  of  fundamental  units. 
The  absolute  unit  of  force  in  any  system  of  fundamental  units 

may  be  defined  as  any  of  the  three  following  : 
(1)  The  force  which  gives  to  unit  of  mass  unit  of  accelera 

tion. 
(2)  The  force  which  gives  to  unit  of  mass  unit  of  velocity 

per  unit  of  time. 
(3)  The  force  which  generates  unit  of  momentum  in  unit 

of  time. 
And  in  any  system,  if  f  absolute  units  of  force  pioduce  a  units 

of  acceleration  in  m  units  of  mass, 
f  =  ma. 

In  the  metric  system,  in  which  the  centimetre  and  the  second 

are  the  units  of  length  and  of  time,  the  gram  mass  is  used  as  the 
unit  of  mass.  This  was  defined  as  the  mass  of  a  cubic  centi- 

metre of  pure  water  at  the  temperatui'e  of  its  maximum  density, 

4°C.  Tlie  gram  mass  in  actual  use  is,  however,  a  little  smaller 
than  this,  as  has  been  found  by  moie  recent  and  exact  obser- 
vations. 

The  absolute  unit  of  force  in  this  system  is  called  the  dyne. 
The  dyne  is  the  force  which  gives  to  a  gram  mass  an 

acceleration  of  one  foot  per  second  per  second. 
Other  definitions  may  be  given,  as  in  the  case  of  the  poundal. 

These  two  systems  are  the  only  ones  in  practical  use,  and  all 

scientific  measurements  are  i-ef erred  to  the  metric  system.  We 
shall  now  recapitulate  what  has  been  said  about  the  systems  of 
measurement,  and  state  the  connexions  between  the  units  of 

one  system  and  the  corresponding  ones  of  the  other. 
Systems  of  Measurement  and  Connexions  between  them. 

— In  the  British  system  the  fundamental  units,  or  units  of 
length,  mass  and  time  are  the  foot,  pound  and  second. 

This  system  is  called  the  Foot-Pound-Second,  or  F.P.S. 

system.  * 
In  the  Metric  system  the  fundamental  units,  or  units  of 

length,  mass  and  time  are  the  centimetre,  gram  and  second. 

I 
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This  system  is  called  the  Centimetre-Gram-Second,  or 
C.G.S.  system. 

The  absolute  unit  of  force  in  the  F.P.S.  system  is  called  the 

poundal. 
The  absolute  unit  of  force  in  the  C.G.S.  system  is  called  the 

dyne. 

Fundamental  Units.— A  standard  pound  and  a  standard 
yard  are  kept  in  the  Exchequer  Office  of  London.  The  foot  is 

defined  as  one-third  of  the  standard  yai'd. 
A  standard  kilogram  and  a  standard  metre  are  kept  in  the 

Archives  of  Paris.  The  gram  is  defined  as  j-^^  of  the  standard 

kilogi'am,  and  the  centimetre  as  yno  ̂ f  the  standard  metre. 

The  second  is  the  fi-action  — — ^-r — — -  of  the  mean  time  of 24  X  60  X  60 

the    earth's    rotation   on   its   axis    relatively   to    the    sun,    or 

r— — — — --  of  the  length  of  the  mean  solar  day. 
24  X  60  X  60  ^  "^ 

By  compaiison  of  these  standards  the  following  relations  are 
found  : 

1  foot  =  30-48  cms., 
or  1  cm.  =  -03281  ft. 

1  lb.  =453-6  grams. 

1  gram  =  -0022046  lbs. 

Example. — What  force  in  poundals  would  give  a  ton  mass 
an  acceleration  of  12  feet  per  second  per  second  ? 

Let  f  poundals  be  the  required  force. 

Then,  by  f=wcr, 
f=  2240x12  =  26880. 

Required  force =26880  poundals. 

Example. — What  velocity  will  a  mass  of  1  kilogram  acquire 
in  10  seconds  under  the  action  of  1  dyne  ? 

Let  a  cm. -sec.  units  be  the  acceleration. 

Then,  by  f=ma, 
1  =  1000a, 

.'.   velocity  acquired  in  10  sees.  =y^^  cms.  per  seC. 



220  ELEMENTARY  MECHANICS  OF  SOLIDS. 

Example. — Express  a  poundal  in  dynes. 

Let  1  poundal  be  f  dynes. 

Now  1  lb.  =  453'6  grams, 

and  1  ft.  =30-48  cms., 

so  that  1  ft.  per  sec.  per  sec.  =30*48  cms.  per  sec.  per  sec. 

Then,  •.•  I  poundal  gives  to  1  lb.  1  ft. -sec.  unit  of  accelera- 
tion, f  dynes  give  453'6  grams  30'48  cm. -sec.  units  of 

acceleration. 

.-.   f=  453-6  X  30-48  =  13826. 

1  poundal  =  13826  dynes. 

Exercises  XIV.  a. 

1.  What  acceleration  will  a  force  of  4  poundals  give  to  a  mass  of 
100  lbs.  ? 

2.  What  force  will  give  to  a  cwt.  a  velocity  of  a  mile  an  hour  in 
one  second  ? 

3.  What  mass  in  grams  must  be  acted  on  by  a  dyne  to  have  an 
acceleration  of  a  foot  per  second  per  second  ? 

4.  What  number  of  dynes  will  give  to  a  gram  an  acceleration 
of  1  foot  per  second  per  second  ? 

5.  What  number  of  dynes  will  give  to  10  lbs.  an  acceleration  of 
1  cm.  per  second  per  second  ? 

6.  How  many  poundals  will  be  required  to  give  to  4  kilograms 
an  acceleration  of  3  foot-second  units  ? 

7.  How  many  poundals  will  give  to  a  gram  an  acceleration  of 
1  cm.  per  second  per  second  ? 

8.  What  mass  in  grams  must  be  acted  on  by  a  dyne  to  have  an 
acceleration  of  a  foot  per  second  per  second  ? 

In  many  questions  the  dynamical  equation,  f=m«,  and  one 
(or  more)  of  the  kinematical  equations,  have  to  be  used. 
Whenever  this  is  the  case  the  acceleration  has  first  to  be 

found  from  one  equation  and  the  value  thus  found  to  be  used  in 

the  other.  The  acceleration,  in  fact,  may  be  called  the  con- 
necting link  between  the  dynamical  and  the  kinematical  part  of 

the  solution. 

I 
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Example. — A  force  of  40  dynes  acts  on  a  kilogram  for  one 
minute.     What  velocity  does  it  generate  ? 

Let  a  cm. -second  units  be  the  acceleration. 

Then,  by  f^ma, 
40=1000  a, 
a  =  ̂ \. 

The  velocity  generated  is,  by  v  =  u  +  at,  equal  to  ̂ ^^  x  60, 
or  2|  cms.  per  second. 

Examples. — A  certain  force  acting  on  a  ton  through  a 
distance  of  5  feet  changes  its  velocity  from  3  to  7  feet 

per  second.     What  is  the  force  ? 

Let  a  foot-second  units  be  the  acceleration. 

Then,  by  v^  =  ti^-h2as, 
72  =  32  +  2.  a.  5; 
a  =  4. 

.-.   the  force  is  2240-4=8960  poundals. 

Example. — A  carriage  on  rails,  having  at  first  a  velocity 
of  30  feet  per  second,  is  observed  in  20  seconds  to  travel 
580  feet.  The  mass  of  the  carriage  is  4^  tons.  What  is 
the  force  of  resistance  to  motion  ? 

Let  a  feet  per  second  per  second  be  the  acceleration  in  the 
direction  of  motion. 

Then,  by  s  =  ut  +  ̂at^; 
580  =  30.  20 +  ia(20)2; 

200  a  =  580  -  600"=  -  20 ; 

Thus  the  resistance  causes  an  acceleration,  in  the  direction 

in  which  it  acts,  of  ̂   foot-second  unit. 

.• .  the  resistance  is  4^  x  2240  x  ̂   poundals  =  1008  poundals. 

In  the  last  example  notice : 

In  the  kinematical  equations  a  is  always  measured  in  the 
same  sense  as  s,  u,  and  v ;  that  is,  this  is  the  positive  sense  of  a ; 

and  the  sign  of  a  indicates  whether  there  is  an  acceleration  or  a 
retardation  of  the  motion.  In  using  these  equations  great  care 

has  to  be  taken  about  the  signs  of  quantities,  especially  of  a. 
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In  the  dynamical  equation,  f=ma,  there  need  be  no  trouble 

about  sign,  a  must  be  of  the  same  sign  as  f  ( •.•  m  is  positive), 
and  we  may  always  consider  them  both  to  be  positive.  When 
we  know  in  which  sense  the  acceleration  is,  this  denotes  in 

which  sense  the  force  acts,  and  the  numerical  value  of  the 

acceleration,  with  that  of  the  mass,  gives  the  magnitude  of 
the  force. 

Thus,  in  the  above  example  the  negative  algebraical  value  of 
a  indicates  that  the  force  is  a  retarding  one,  and  the  numerical 
values  of  a  and  m  give  the  magnitude  of  the  force. 

Again,  conversely,  if  we  know  the  magnitude  of  the  force 

and  that  of  the  mass  we  find  the  magnitude  of  a  by  simple 
division,  and  the  algebraical  sign  to  be  given  to  a  must  then  be 

determined  by  the  nature  of  the  question.  This  is  exemjjlified 
in  the  following : 

Example. — A  half-ounce  bullet  is  fired  through  a  3-inch 
board.     The  mean  resistance  to  motion  is  5000  poundals. 

If  the  bullet  has  a  velocity  of  1200  feet  per  second  before 
«  striking  the   board   and  the   resistance   offered  by  the 

board  is  5000  poundals,  find  the  velocity  of  the  bullet 
after  passing  through  the  board. 

If  a  foot-second   units  is  the  acceleration  in  the  board; 

then,  by  f=ma,  since  gV  lb.  is  mass  of  bullet. 
5000- aV.a; 

.'.    a  =160000. 

Let  V  feet  per  second  be  velocity  after  passing  through 
board. 

.•.   by  v^  =  2(^-\-2as, 

iP-  =  (1 200)2  +  2  (  -  1 60000)  .  \ 
=  1440000-80000 

=  1360000. 

.-.   ̂ =1166. 

Yelocity  required  is  1166  feet  per  second. 
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Exercises  XIV.  b. 

1.  For  how  long  must  a  poundal  act  on  a  ton  to  give  it  a  velocity 
of  one  foot  per  second  ? 

2.  What  force  acting  on  a  mass  of  7  kilograms  gives  it  a 
velocity  of  16  cms.  per  second  while  moving  it  from  rest  through 
32  cms.  ? 

3.  A  mass  of  2  grams  is  moving  with  a  velocity  of  16  cms.  per 
second,  and  is  acted  on  by  a  retarding  force  of  5  dynes.  How  far 
will  it  go  before  coming  to  rest  ? 

4.  What  velocity  must  be  given  to  a  mass  of  one  hundredwedght, 
acted  on  by  a  force  of  14  poundals  in  the  direction  of  its  motion, 
that  it  may  move  through  9  feet  in  4  seconds  ? 

5.  What  velocity  must  be  given  to  a  mass  of  one  hundredweight, 
acted  on  by  a  force  of  14  poundals  opposite  to  the  direction  of  its 
motion,  that  it  may  move  through  9  feet  in  4  seconds. 

6.  What  velocity  in  feet  per  second  will  a  mass  of  2  lbs.  acquire 
if  it  is  moved  from  rest  through  a  distance  of  3  yards  by  a  force  of 
16  poundals  ? 

7.  For  how  long  must  a  force  of  8  dynes  act  on  a  mass  of  a 

kilogram  to  change  its  velocity  from  "4  metres  peir  second  to  "6 
metres  per  second  in  the  opposite  direction  ? 

8.  What  time  will  a  mass  of  2  ounces,  starting  with  a  velocity  of 
6  feet  per  second  and  acted  on  by  a  force  of  2  poundals  in  the  direc- 

tion of  its  motion,  take  to  travel  44  feet  ? 

Summary- 

In  Dynamics  a  force  is  estimated  by  its  effect  in  producing  motion 
in  a  body. 

Every  body  resists  the  action  of  forces  tending  to  set  it  in  motion 
or  to  stop  its  motion,  and  the  resistance  is  greater  the  heavier  the 
body. 

Inertia  is  the  property  of  a  body  in  virtue  of  which  it  resists  the 
action  of  forces  tending  to  change  its  state  of  motion. 

Mass,  which  is  sometimes  called  the  quantity  of  matter  in  a  body, 
is  the  same  as  its  inertia. 

If  a  body  is  set  in  motion  under  conditions  in  which  the  force 
opposing  the  motion  is  made  very  small,  then  the  rate  at  which  the 
velocity  falls  off  is  very  sinall.  And  the  smaller  the  opposing  force 
is  made  the  more  nearly  does  the  velocity  become  uniform. 

These  observations,  and,  more  particularly,  indirect  observatiops 
gn  the  heavenly  bodies,  lead  us  to  infer  the  truth  of 
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Newton's  First  Law  of  Motion. 
Every  body  continues  In  a  state  of  rest  or  of  uniform  motion  in  a 

straight  line,  except  in  so  far  as  it  is  compelled  to  change  that  state 
by  external  impressed  force. 

If  a  constant  force  acts  on  a  given  mass  it  produces  in  it  a  constant 
acceleration. 

To  change  the  acceleration  in  any  ratio,  mass  being  constant,  the 
force  must  be  changed  in  the  same  ratio. 
When  the  mass  is  changed  in  any  ratio,  the  acceleration  being 

constant,  the  force  must" be  changed  in  the  same  ratio. 
Therefore,  force  is  proportional  to  the  product  mass  x  accelera- 

tion. 

Momentum  =  mass  x  velocity, 

It  follows  that :  force  is  proportional  to  rate  of  change  of  momen- 
tum which  it  produces.     This  is  expressed  in 

Newton's  Second  Law  of  Motion. 
Rate  of  change  of  momentum  is  proportional  to  the  acting  force 

and  takes  place  in  the  direction  in  which  the  force  acts. 
The  force  producing  in  mass  m  pounds  an  acceleration  of  a  feet 

per  second  per  second  is  proportional  to  ma  however  force  is 
measured. 

Take  the  force  producing  in  mass  1  lb.  acceleration  1  foot  per 
sec.  per  sec.  as  one  unit  of  force. 

Then,  force  producing  acceleration  a  feet  per  sec.  per  sec.  in  m 
pounds  is  eqiial  to  ma  units. 

This  unit  of  force  is  called  the  poundal. 

The  momentum  generated  in  one  second  in  any  mass  by  a  poundal 
is  one  foot-pound-second  unit  of  momentum. 

In  any  system  of  units  the  absolute  unit  of  force  is  the  force  which 
gives  to  unit  of  mass  unit  of  acceleration. 

If /units  of  force  act  on  mass  ?«  and  produce  acceleration  a,  then 
/  =  /na. 

This  is  the  fundamental  equation  of  Dynamics. 
The  absolute  unit  of  force  in  the  metric  system,  or  the  force  which 

produces  in  one  gram  an  acceleration  one  cm.  per  sec.  per  sec.  is 
called  the  dyne. 



CHAPTER  XY. 

DYNAMICAL  MEASURE  OF  WEIGHT. 

ATTWOOD'S  MACHINE. 

Dynamical  Measure  of  Weight.— The  weight  of  a  body  is 
the  force  with  which  the  earth  attracts  it  to  itself. 

This  force  can  be  measured  in  dynamical  units,  like  any  other 

force,  if  we  know  what  acceleration  it  can  produce  in  a  certain 
mass.  Thus,  if  we  know  the  mass  of  the  body  and  the  acceleration 

with  which  its  weight  moves  it,  that  is,  the  acceleration  with  which 
it  falls,  if  allowed  to  fall  freely,  we  can  determine  the  dynamical 
measure  of  its  weight. 

Consider,  for  instance,  the  weight  of  a  pound.  This  is  a  force 

which  may  be  specified  as  a  certain  number  of  poundals.  Now 

the  weight  of  a  pound  gives  to  a  mass  of  a  pound  an  acceleration 

of  32  foot-second  units;  for  a  pound  (or  any  other  mass)  if 
allowed  to  fall  freely  falls  with  an  acceleration  of  32  units. 

.•. ,  by  the  equation  f=ma,  the  weight  of  a  pound  is  1 .  32  units, 
that  is,  32  poundals. 

In  general,  suppose  the  weight  of  m  pounds  to  be  w  poundals. 
Let  g  feet  per  second  per  second  be  the  acceleration  due  to 

gravity. 

Then  since  the  force  w  poundals  produces  g  foot-second  units 
of  acceleration  in  m  pounds, 

W  =  mg. 

This  same  relation  must  hold  in  any  system  of  units  whatever, 

W  being  the  number  of  absolute  units  of  force  in  the  weight 
of  m  units  of  mass,  and  g  being  the  measure  of  the  acceleration 

due  to  gravity  in  the  given  units  of  mass  and  time. 

In  the  F.P.S.  system  we  have,  weight  of  apou7id=32  poundals. 
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In  the  C.G.S.  system,  ̂   =  981.  That  is,  the  weight  of  a  gram 

produces  981  cm.-sec.  units  of  acceleration  in  a  gram. 

.*.    weight  of  a  gram  =  981  dynes. 
The  Weights  of  all  Bodies  are  proportional  to  their  Masses. 

— Experiment  shows  that  at  a  given  place  the  accelerations  of  all 
bodies  due  to  their  own  weights  are  the  same.  Hence,  from  the 
formula VT  =  mg, 

it  follows,  since  g  is  the  same  for  all  bodies,  that,  at  a  given  place, 
the  weights  of  all  bodies  are  proportional  to  their  masses. 

This  fact  is  made  use  of  in  weighing.  A  body  is  weighed  in 
order  to  determine  its  mass.  If  we  say  that  a  body  weighs 

a  pound  we  mean  that  its  weight  is  equal  to  that  of  a  standard 

mass  of  a  pound,  or  that  the  earth's  attractive  forces  on  them  are 
equal.     Hence  we  infer  that  their  masses  are  also  equal. 

A  pound  of  iron  and  a  pound  of  wood  are  two  masses  which 
possess  the  same  inertia,  and  will  always  possess  the  same  inertia 

whether  they  are  in  the  same  or  in  different  localities.  As  long 

as  they  are  in  the  same  locality  they  possess,  as  far  as  experiment 
can  show,  exactly  the  same  weights  ;  but  the  weight  of  either 
varies  slightly  as  we  move  it  about  into  various  localities  to  which 
we  have  access. 

The  simplest  way  of  showing,  with  a  moderate  degree  of 
accuracy,  and  by  means  of  an  easy  experiment,  that,  in  a  given 
locality,  the  weights  of  bodies  are  proportional  to  their  masses, 

is  to  show  that  different  bodies  fall  through  equal  distances  in 
equal  times.  For  instance  a  ball  of  iron  and  a  ball  of  wood  let 
fall  from  the  same  height,  at  the  same  instant,  will  reach  the 

ground  simultaneously. 
A  light  body,  such  as  a  feather,  is  found  to  fall  more  slowly 

than  a  dense  one  such  as  a  piece  of  lead.  But  this  is  due  to  the 

resistance  of  the  air,  which,  being  greater  in  comparison  to  the 

weight  of  the  light  body,  produces  more  effect  on  it.  If  a  special 

experiment  is  made  in  which  the  air  is  removed  from  the  space 

in  which  two  bodies,  such  as  a  feather  and  a  piece  of  lead,  fall^ 
they  will  be  found  to  fall  through  the  same  distance  in  the  same 

time.  Or,  we  may  say,  in  a  vacuum  all  bodies  fall  with  equal 

rapidity. 

Now  by  the  formula  s  —  \at^,  it  follows  that  if  two  bodies 
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move  through  the  same  distance  s  in  the  same  time  t,  the  accelera- 
tion is  the  same  for  both. 

Thus  the  accelerations  of  the  iron  and  of  the  wood  due  to 

gravity  are  equal. 

Then,  by  the  formula  f=ma,  it  follows  that  the  forces  pro- 
ducing these  accelerations  in  the  two  masses  are  proportional  to 

the  masses.     And  these  forces  are  the  weights  of  the  masses. 

Let  g  be  the  common  acceleration ;  m^,  Wg  the  masses  of  the 
bodies  ;  Wi,  Wj  their  weights. 

Then  Wi=  m^g, 

W2     ̂
2' 

Example. — If  a  pound's  weight  acts  on  a  ton,  find  the 
acceleration  produced. 

Mass  moved  =  2240  lbs. 

Force  =  32  poundals. 

Let  a  feet  per  second  per  second  be  the  acceleration. 

Then,  by  f=ma, 
32  =  2240a, 

'  The  acceleration  is  ̂ q  ft.  per  sec.  per  sec. 

Example. — What  force,  in  grams'  weight,  is  required  to 
give  to  2  kilograms  a  velocity  of  2  metres  per  second  in 

J  of  a  second  ? 

Mass  moved =2000  grams. 

Yel.  acquired  in  J  sec.  is  200  cms.  per  sec. 

.*.   acceleration  =  200 -^  J  =  800  cms.  per  sec.  per.  sec. 

.  • .    required  force  =  2000  x  800  dynes 
=  1600000  dynes 
1600000  ,     ̂  

=  — ggj—  grams'  wt. 
=  1631  grams'  weight  nearly. 
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Example. — How  many  F.P.S.  units  of  momentum  will  a 

ton's  weight  generate  in  a  minute  ? 

Force  acting  =  2240  x  32  poundals. 

.*.   momentum  generated  per  second  =  2240  x  32  units. 

.-.   momentum  generated  in  1  minute  =  2240  x  32  x  60  units 
=  4300800  units. 

Example. — A  train  has  a  velocity  of  30  miles  per  hour,  and 

the  resistance  to  its  motion  is  8  lbs.'  weight  per  ton  of  its 
mass.  If  left  to  itself,  how  far  will  it  move  before  coming 
to  rest  ? 

Let  the  acceleration  in  the  direction  of  the  resisting  force 
be  a  foot-second  units. 

Let  the  mass  of  the  train  be  m  tons. 

Force  is  m  x  8  x  32  poundals. 
Mass  is  m  X  2240  pounds. 

.-.   mx8x32  =  mx2240xa. 
.-.   a  =  MH  =  3V 

Initial  velocity  =  44  feet  per  second. 

Let  s  feet  be  distance  before  coming  to  rest. 

Then,  by  v^=u^-{-2as, 
0  =  (44)2  +  2(-^K 

,.(44^^11.22.35  =  8470. 

Required  distance  is  8470  feet. 

Example. — A  boy  starts  to  slide  and  moves  for  3  seconds 
before  coming  to  rest,  during  which  time  he  passes  over 
18  feet.  Show  that  the  resistance  to  motion  is  one- 

eighth  of  his  weight. 

Let  a  foot-second  units  be  the  acceleration  in  the  direction 
of  motion. 

Then,  by  s=vt  —  ̂ at\ 

18=0-|.a.32, 
a=-4. 
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Let  m  lbs.  be  the  boy's  mass ;  and  f  poundals  the  resistance. 
Then,  by  f=ma, 

f=m.  4. 

But  boy's  weight  is  32  m  poundals. 
.'.    resistance  to  motion 

Exercises  XV.  a. 

L  A  body  is  acted  on  by  a  force  equal  to  one-third  of  its  weight. 
Find  its  acceleration  in  foot-second  units. 

2.  On  what  mass  must  a  force  of  a  kilogram's  weight  act  to  give 
it  an  acceleration  of  2  metres  per  second  per  second  ? 

4.  What  force  in  lbs.'  weight  will  give  to  100  lbs.  40  foot-second units  of  acceleration  ? 

5.  A  body  moves  from  rest  through  4  feet  in  2  seconds.  Show 

that  it  is  acted  on  by  a  force  equal  to  ̂ e  of  its  own  weight. 

6.  A  body's  velocity  is  reduced  from  16  to  12  feet  per  second  in 
4  yards  under  the  action  of  a  retarding  force.  What  fraction  of  its 
weight  is  this  force  ? 

7.  A  train  is  brought  to  rest  in  12  seconds  in  120  yards.  Show 

that  the  force  of  resistance  is  ̂ 2  of  its  weight. 

8.  A  train  starts  from  rest  and  acquires  a  velocity  of  40  miles  per 
hour  in  half  a  minute.  Show  that  the  force  exerted  by  the  engine, 
in  addition  to  that  necessary  to  overcome  the  resistance  to  steady 
motion,  is  iVo  of  the  weight. 

The  motion  of  connected  Bodies. — We  shall  now  give  some 
examples  of  the  motion  of  bodies  which  are  under  the  action  of 

given  forces,  and  are  connected  so  that  they  must  always  have 

the  same  velocity,  as,  for  instance,  bodies  which  ai-e  connected 
by  inextensible  strings,  or,  again,  bodies  which  always  remain 
in  contact  with  each  other.  In  such  cases  it  is  generally  the 
stress  in  the  connexion  which  is  required. 

Consider  the  following  as  a  typical  example  of  this  sort  of 
problem. 

Example. — Two  bodies  of  masses  m  and  m'  are  connected 
by  an  inextensible  string,  and  move  in  the  line  of  the 
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string  under  the  action  of  a  force  P  acting  directly  upon 
the  mass  m.     Find  the  tension  in  the  string. 

T      T  v^      P 
Fia.  140. — Motion  of  connected  masses. 

Since  the  string  is  inextensible,  the  two  bodies  must  have 
the  same  acceleration. 

First,  find  the  acceleration  of  the  system. 

Since  force  P  moves  mass  m  +  m',  acceleration  is 
P 

m  +  m' 
Now  consider  the  motion  of  the  mass  ?n'. 
Let  the  required  tension  in  the  string  be  T. 

m'  moves  under  the  action  of  force  T,  and  has  acceleration 
P 

m  +  m" 
Therefore,  by  formula  f=ma, 

m  W'P 

We  may  notice  that  the  same  result  would  be  got,  after  finding 
the  acceleration,  by  considering  the  motion  of  the  mass  m. 

This  moves  under  the  action  of  the  resultant  force  P  -  T. 

P 
P-T 

m  +  m 

T  =   ;,  as  before. 

m  +  m^ 
The  form  of  the  solution  may  be  varied  in  the  following  way. 

Apply  the  equation  f—7iia  to  the  motion  of  each  of  the 
masses  separately, 

m  moves  under  the  action  of  P  —  T,  and  m'  moves  under  the 
action  of  T. 

Thus  we  have,  if  a  is  the  acceleration, 
P-T  =  ma, 

T=m'a. 

I 
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As  we  do  not  require  a  we   eliminate   it   from   these   two 

equations  and  obtain 

mT-(m'  +  m)T  =  6>; 

m+m!' 

Notice 
 
that  in  solving

  
this  questio

n  
to  get  our  equatio

n  
in  T, 

we  must  conside
r  

the  motion 
 
of  one  of  the  bodies 

 
separat

ely. 

The  equatio
n  

thus  got  introdu
ces  

another
  
unknow

n  
quantit

y  
a. 

Therefo
re  

we  must  have  another
  
equati

on.  
This  is  most  easily 

got  by  conside
ring  

the  motion 
 
of  the  whole  system,

  
as  was  done 

in  the  first  cast. 

Example.-  -A  body  of  mass  m,  hanging  by  a  string,  draws 

a  body  of  mass  m'  along  a  smooth  horizontal  table,  the 
string  passing  over  a  pulley  at  the  edge  of  the  table. 
Find  the  acceleration,  the  tension  in  the  string,  and  the 

pressure  of  m'  on  the  table. 

The  two  masses  move  with  a  common  acceleration  under  the 

action  of  certain  forces. 

Although  they  move  in 
different  directions,  their 
acceleration    and     their 

velocity  at  each  instant 
will   be   the  same  as  if 

they  moved  in  the  same 
straight  line  under  the 
action   of    these   forces ; 

and  we  may  consider  the 
motion  of  the  bodies  as 
a  whole  as  if  this  were 
the  case. 

Let  a  be  the  acceleration, 

T  the  tension  in  the  string, 

and  R  the  upward  pressure  of  the  table  against  m'. 
The  bodies  move  under  the  action  of  the  weight  of  m,  that 

is,  the  force  mg. 

.".   mg  =  (m  +  m')a. 

,.   a  =  ̂ ^. 

i\Su 

^ 

mg, 
'mg 

Fig.  141. 
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Consider  the  motion  of  m'. 
This  moves  horizontally  under  the  action  of  the  force  T. 

.-.   T=m'a 

_  mm'g 

m  +  mf'
 

Since  m'  is  acted  upon  by  the  two  forces  m'g  vertical
ly 

downwa
rds  

and  E  vertica
lly  

upwards
,  

and  since  it  has 

no  vertical
  
motion,

 

.'.   'B,  =  m'g. 

Notice  carefully  this  last  conclusion.  It  is  a  result  of  the 

second  law  of  motion  which  says  that  change  of  motion  is  in 

the  direction  of  the  acting  force ;  or  we  may  say  the  entire 
resultant  force  acting  on  the  body  must  be  in  the  direction  of 
the  change  of  motion.  Now  the  entire  force  is  in  this  case 

made  up  of  T  horizontally  and  R  and  m'g  vertically.  Of  these 
T  is  in  the  direction  of  the  change  of  motion,  or  of  a.  It 

follows  that  R  and  m'g  must  be  equal  in  magnitude  ;  for  if 
they  were  not,  the  resultant  force  would  have  a  vertical  com- 

ponent as  well  as  the  component  T,  and,  therefore,  could  not 
be  horizontal. 

Notice  that  in  any  question  of  this  sort  the  tension  of  the 

string  is  assumed  to  be  the  same  throughout.  This  is  the  case 

if  no  force  is  spent  in  setting  the  pulley  in  motion  either 
against  its  own  inertia  or  against  frictional  resistance,  and  if 
the  string  required  no  resultant  force  to  set  it  in  motion ;  that 

is,  if  we  can  neglect  friction  in  the  pulley  and  the  masses  of  the 
pulley  and  the  string. 

In  this  question  it  might  seem  at  first  as  if  the  tension  of  the 

string  which  has  a  mass  m  attached  to  its  end  is  the  weight 
of  this  mass.  This  would  be  so  if  the  string  held  the  mass  at 
rest,  or  even  if  the  mass  moved  down  or  up  with  uniform 
velocity.  But  it  is  clear  that  the  weight  must  be  in  excess 
of  the  tension  from  the  fact  that  the  mass  moves  with  down- 

ward acceleration,  so  that  there  must  be  a  resultant  downward 

force  acting  upon  it.  That  is,  the  force  pulling  it  down  is 
greater  than  the  force  pulling  it  up,  or  the  weight  is  greater 
than  the  tension. 



DYNAMICAL  MEASURE  OF  WEIGHT.  233 

Experiment  39. — Place  a  loaded  trolley  of  entire  mass  m  (say 
about  10)  pounds  on  a  flat,  smooth,  horizontal  board  placed  on  a 
table  and  raised  up  about  4  or  5  feet  from  the  floor.  Pass  a  strong 
fine  string  from  it  over  a  light  smooth  pulley  at  the  end  of  the  board, 
so  that  when  the  string  between  trolley  and  pulley  is  stretched  it  is 
horizontal.  Let  the  end  of  the  board  with  the  pulley  project  beyond 
the  edge  of  the  table  so  that  the  rest  of  the  string  may  hang 
vertical.  Attach  a  light  pan  to  this  end  of  the  string.  Find  the 

mass  m'  lbs.  (including  that  of  the  pan)  which  must  be  carried  by 
the  string  so  as  just  not  to  move  the  trolley.  The  weight  of  this 
just  balances  the  friction.  Now  suspend  an  additional  mass  m"  lbs. 
to  the  string,  so  as  to  make  the  trolley  run  along  the  board  slowly. 

The  weight  of  m"  lbs.,  or  m"g  poundals,  is  the  effective  force 
causing  motion  in  the  whole  mass  m  +  m'  +  m". 

With  the  help  of  a  clock  beating  seconds,  or  with  a  watch  ticking 
at  a  known  rate  and  held  close  to  the  ear,  observe  the  distances 
passed  over  in  1,  2,  3,  etc.,  seconds  from  starting.  This  may  be 
done  by  releasing  the  trolley  at  a  definite  tick  and  noticing  the  dis- 

tance passed  over  at  the  instant  of  the  tick  indicating  the  lapse  of 
the  time  in  question.  For  the  distance  passed  over  in  any  given 
number  of  seconds  a  single  observation  is  not  sufficient.  With  a 
little  practice  several  estimations  of  the  distance  described  in  a 
given  time  can  be  made  very  close  to  each  other.  When  this  is 
done  the  mean  of  several  observations,  say  four  or  five,  should  be 
taken  for  the  distance  required. 

The  distances  may  be  measured  by  having  a  scale  attached  to  the 
board,  so  that  the  trolley  runs  close  by  the  side  of  it ;  or  marks  may 
be  made  on  the  board,  and  the  distances  measured. 

Draw  up  a  table  of  the  distances  for  1,  2,  3,  etc.,  seconds.  Since 
the  force  is  constant  and,  therefore,  the  acceleration  uniform,  these 
distances  should  be  proportional  to  P,  2^,  3^,  etc. 

If  the  distances  are  not  found  proportional  to  the  times  it  is  pro- 
bably because  the  board  does  not  offer  a  uniform  frictional  resistance 

to  the  motion,  or  because  the  wheels  or  pulley  do  not  work  evenly. 
All  this  may  be  tested  by  seeing  whether  the  same  force  is  required 
just  to  start  the  trolley  in  various  positions. 

Deduce  from  each  of  the  observations  of  the  distances  passed  over 
in  the  various  times,  and  by  using  the  formula  8  —  \at^,  values  of  the 
acceleration  wdth  which  the  trolley  moves.     These  should  be  equal. 

Experiment  40. — With  the  same  apparatus  keep  the  entire  mass 
m  +  7n' -\-m",  which  is  in  motion,  constant;  but  vary  the  moving 
weight.  This  may  be  done  by  taking  weights  out  of  the  pan  and 
putting  them  into  the  trolley.  The  friction  force,  measured  by  the 
weight  of  m,  will  vary  extremely  little  with  such  small  variations  of 
the  mass  of  the  trolley,  and,  when  there  is  very  little  friction  it  will 
generally  be  found  that  this  force  is  practically  the  same  throughout 
the  experiments. 

With  each  moving  force  determine  the  corresponding  acceleration 
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by  letting  the  trolley  run  for  a  considerable  time,  say  3  seconds,  if 
possible. 

Tabulate  the  moving  forces  and  the  acceleration.  These  should  be 
proportional  to  each  other. 

If  a  is  the  value  of  the  acceleration  in  any  one  of  the  experiments, 
since  the  moving  force  is  m"g  and  the  mass  is  m  +  mf  +  m",  therefore 

m!'g  =  {m  +  m'  +  m")  a  ; 

(m  +  w'  +  m")  a 
^  m 

Find  the  value  of  g  from  each  of  the  experiments. 

Example. — Two  masses  m,  m'  are  attached  to  the  ends  of 
a  string  which  passes  over  a  light  pulley,  m,  which  is 

the  greater,  descends,  drawing  up  m'.  Find  the  accelera- 
tion and  the  tension  in  the  string. 

Let  a  be  the  acceleration,  and  T  the 
tension  in  the  string. 

The  forces  acting  on  the  system  of  two 

masses  are  the  weight  of  m  in  the 
direction  of  the  motion,  and  the 

weight  of  m!  in  the  direction  opposite 
to  the  motion. 

Thus  the  motion  takes  place  under  the 

action  of  the  force  mg  —  m'g. 

. ' .   mg  —  m'g  =  (m  +  m')  a. 

(m-m')g 
m+m 

Consider  the  motion  of  m'. 

r 
\n'g 

'mg 

Fig.  142. 

This  takes  place  under  the  action  of  the  force  T  -  m'g 
.'.   '£  —  m'g=m'a. 

m'{m  —  m')g  _  2mm'g 

m  +  m'         m+m'' 
T  =  m'^  +  ' 

Example, — In  the  last  example  a  mass  M  is  placed  upon  m. 

Find  the  pressure  between  them. 

Let  P  be  the  required  pressure,  and  a  the  acceleration. 

Mass  in  motion  is  m-{-m'  +  M, 

I 
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Moving  force  is  {m  +  M-  'in')g. 

m  +  M—m' 
m  +  m  +M'^ 

iLT  moves  under  the  action  of  the  force  J^  — P. 

V  =  M{g-a) 

_     '^Mm'g ~m-\-m'  -\-M' 

As  a  check  we  may  find  P  another  way. 

Consider  the  motion  of  the  system  composed  of  m  and  m'. 
This  is  acted  upon  by  the  pressure  P  in  the  sense  of 
the  motion. 

Entire  force  causing  motion  is  P  +  (m  —  'm')g. 

.'.    P  +  (m-m')q  =  (m-\-m)a=-   — — -. — jj   —. 

p^  2Mm
'g 

m  +  m'  +  M' These  results  are  not  given  that  they  should  be  remember
ed, 

but  the  examples 
 
have  only  been  worked  to  indicate  how  any 

cases  of  the  sort  should  be  dealt  with.  In  all  cases  they  should 

be  worked  by  applying 
 
the  force  formula, 

 
f=ma,  to  the  motion 

of  the  system  and  to  the  motion  of  such  parts  of  the  system  as 

it  may  be  necessary
  

to  consider. 

Experiment  41. — Fix  a  light,  very  smoothly  running  pulley  about 
8  feet  from  the  floor.  Pass  a  fine  string  about  8  feet  long  o\'er  it ; 
and  attach  scale  pans  to  the  ends  of  the  string.  Load  the  pans  so 
that  the  entire  mass  on  each  side  is  m  lbs.  With  a  very  light  pulley 
and  a  very  fine  string  a  suitable  load  on  each  side  is  about  1  lb.  or 
2  lb.  Now  a  very  small  additional  weight  on  one  side  should  cause 
motion  if  the  pulley  is  very  good  and  the  bearings  well  lubricated. 

Place  a  vertical  scale  so  that  the  pan  on  one  side  may  run  up  and 
down  close  to  it. 

Add  to  this  pan  an  additional  load  m!  lbs.  About  \  oz.  or  1  oz. 

may  be  tried,  so  that  m'  would  be  ̂   or  yV- 
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Then  the  mass  in  motion  is  2m  +  77i'.  And  the  force  producing 
motion  is  m'g  poundals. 

By  holding  the  loaded  pan  high  up  and  releasing  it  at  a  definite 
instant,  notice,  in  successive  trials,  the  distances  passed  over  in  ], 
2,  3,  etc.,  seconds. 

These  should  be  proportional  to  the  squares  of  the  times,  that  is, 
to  I,  4,  9,  etc. 
From  each  of  the  observations  deduce  the  value  of  the  acceleration 

by  the  formula  s  =  ̂  afi. 
From  the  value  of  the  acceleration  find  g. 

Example. — Masses  of  4  and  5  grams  are  fastened  to  the 
end  of  a  string  whicli  passes  over  a  light  pulley,  and  a  2 

gram  mass  is  hung  by  another  string  below  the  4  grams. 

The  whole  is  free  to  move.  Find  in  grams'  weight  the 
tension  in  the  string  connecting  the  2  and  4  grams.  If 
this  string  is  cut  when  the  4  grams  has  descended  2 
seconds,  find  how  far  it  will  descend  altogether. 

Let  a  cms.  per  sec.  per  sec.  be  the  acceleration  of  the  system 
before  the  string  is  cut. 

Let  T  dynes  be  the  tension. 

Mass  in  motion  =  11  grams. 

Moving  force     =g  dynes. 

The  mass  2  grams  moves  under  the  action  of  force  2g-T 
dynes. 

.-.   2^-T  =  2.  «  =  TY- 

•  11  ■ 

Tension  of  string  =  1^^  grams'  weight. 

Let  a'  cms.  per  sec.  per  sec.  be  the  upward  acceleration  of 
the  4  grams  after  the  string  is  cut. 

Mass  9  grams  is  moving  under  action  of  g  dynes. 

.-.   g:=9a', 
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With  acceleration  ̂   the  4  gram  mass  descends  in  2  seconds 

a  distance 

+  ̂ yr '  2^  cms.  =  r^  cms. 

It  then  has  downward  velocity  -^  cms.  per  sec. 

With  upward  acceleration  '2  the  4  gram  mass   descends, 

before  cominsc  to  rest,  a  distance 

(ffy- 

2g  18a 

9  '"''•  =121  '^''- 
.*.   entire  distance  descended  is 

-^  +  j^  cms.  =T^  cms.  =  324  "3  cms. 11       1^1  iZL 

Notice  the  advantage  of  keeping  the  symbol  g  in  the  working, 
instead  of  substituting  its  numerical  value,  the  cumbrous  981. 

To  find  the  tension  in  grams'  weight,  the  value  of  g  is  not 
required  at  all  ;  and  even  to  find  the  distance  it  is  better  to 
first  find  it  in  terms  of  g,  and  then  substitute  the  numerical 
value  of  g. 

Example. — A  body  of  mass  5  lbs.  rests  on  an  inclined  plane 
of  slope  2  in  15,  and 
another  body  of 
mass  3  lbs.  is  at- 

tached to  it  by  a 

string  which  passes 

over  a  pulley  at  the  is' ^S" top  of  the  plane. 
Find  the  accelera- 

tion of  the  motion 

and  the  tension  in 

the  string.  P^^  143 

The  system  is  acted  on  in  the  line  of  motion  by  the  resolved 
part  of  the  weight  of  5  lbs.  down  the  plane,  and  by  the 
weight  of  3  lbs.  vertically  downwards. 

I'hese  forces  are  ̂ ^  .  bg  and  Zg  poundals. 
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The  second  being  the  greater,  the  system  will  move  so  that 

the  3  lb.  mass  descends  vertically,  and  the  5  lb.  mass  goes 
up  the  plane. 

Force  causing  motion  is 

K^if-iT"- 'y/  F""" 
Let  acceleration  be  a  feet  per  second  per  second 

Then 

7^ 

3 

=  8.  a, 

a- 

-^-91 

24     ̂«- 

Let  the  tension  in  the  string  be  T  poundals. 
By  the  motion  of  the  3  lb.  mass. 

3g~T-. 

-«=|. 

.'.  T 

8 
 ■ 

The  acceleration  is  9^  feet  per  second  per  second,  and  the 

*    tension  of  the  string  is  2^  Ibs.'  weight. 

Exercises  XV.  b. 

1.  A  force  of  8  dynes  draws  a  mass  of  7  grams  horizontally, 
which  draws  a  mass  of  2  grams  behind  it.  What  is  the  acceleration  ? 
and  what  is  the  tension  in  the  string  connecting  the  masses  ? 

2.  If  two  masses  m  and  n  are  connected  by  a  string  and  a  force 
P  acts  on  the  mass  m  in  the  direction  from  7i  to  m,  show  that  the 

  nP 
tension  in  the  string  is  — ; — . 

3.  Three  pound  weights  are  connected  by  strings  in  a  straight 

line,  and  are  acted  on  by  a  force  of  a  pound's  weight  in  the  same  line. 
How  far  will  they  move  in  a  secoiid  ?  and  what  are  the  tensions  in 
the  two  strings  ? 

4.  A  pound  weight  hanging  by  a  thread  draws  a  5  pound  weight 
along  a  smooth  horizontal  table.  What  is  the  tension  in  the  thread  ? 
and  in  what  time  will  the  system  travel  6  feet  ? 

5.  A  56  pound  weight  is  placed  at  one  edge  of  a  perfectly  smooth 
table  6  feet  long,  and  a  half  ounce  weight  is  attached  to  it  by  a  string 
hanging  over  the  opposite  edge.  In  what  time  will  the  56  pound 
weight  travel  to  the  opposite  edge  ?  ' 
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6.  A  10  pound  weight  rests  on  a  smooth  table.  A  pound  weight 
hangs  by  a  thread  which  is  attached  to  the  10  pound  weight,  and 
passes  over  a  smooth  light  pulley  at  the  edge  of  the  table.  A  second 
pound  weight  is  placed  on  the  top  of  the  first.  Find  the  force  of 
pressure  between  the  two. 

7.  A  4  pound  weight  is  on  a  smooth  table.  What  mass  must  be 
attached  to  it  by  a  string  passing  over  the  edge  so  that  the  two  may 
move  with  acceleration  lOf  feet  per  second  per  second  ? 

8.  What  mass  must  hang  from  a  thread  hanging  over  the  edge 
of  a  smooth  tal)le  and  attached  to  a  mass  of  100  pounds  on  the  table 
so  that  the  whole  may  pass  over  6  feet  in  a  minute  ? 

9.  Masses  of  2  and  3  pounds  hang  by  a  thread  passing  over  a  light 
pulley.     Find  the  acceleration  and  the  tension  in  the  thread. 

10.  Two  pound  masses  are  attached  to  the  ends  of  a  thread  passing 
over  a  pulley.  If  an  ounce  is  removed  from  one  and  added  to  the 
other,  through  what  distance  will  they  pass  in  two  seconds  ? 

11.  Masses  m,  m'  at  the  ends  of  a  string  over  a  pulley  move  through 
a  distance  s  and  acquire  a  velocity  v.     Prove  that 

{m  +  m')v^  =  2(m  -  m')gs. 
12.  Two  masses,  10  and  12  ounces,  are  at  the  ends  of  a  string 

passing  over  a  light  pulley.  In  what  time  will  they  move  through 
11  feet? 

13.  Two  250  gram  weights  are  fastened  to  the  ends  of  a  string 
over  a  pulley.  A  10  gram  weight  is  placed  upon  one  of  them  so 
that  they  begin  to  move.  Find  the  pressure  which  the  10  gram 
weight  exerts. 

14.  A  string  over  a  light  pulley  carries  at  its  ends  two  scale  pans 
each  weigliing  20  grams.  Masses  40  and  50  grams  are  placed  in  the 
pans.     Find  the  pressures  which  they  exert. 

15.  Masses  of  490  and  510  grains  are  attached  to  the  end  of  a 
string  over  a  light  pulley,  and  when  left  free  to  move  pass  through  5 
feet  in  4  seconds.  What  value  does  this  give  for  the  acceleration 
due  to  gravity  ? 

16.  How  could  an  experiment  be  arranged  with  a  light  smooth 

pulley  to  show  the  motion  of  6  pounds  under  the  actions  of  2  pounds' 
weight  ? 

17.  How  could  you  show  the  motion  of  10  pounds  under  the 
action  of  the  weight  of  half  an  ounce  ? 

18.  A  10  pound  mass  is  on  an  inclined  plain  whose  slope  is  1  in 
3.  It  is  attached  to  a  5  pound  mass  hanging  at  the  end  of  a  string 
passing  over  a  pulley  at  the  top  of  the  plane.  Find  the  acceleration 
of  the  10  pound  mass  and  the  tension  of  the  string. 

19.  How  long  will  1  pound  hanging  vertically  take  to  draw  4 
pounds  up  10  feet  of  an  inclined  plane  of  slope  1  in  5  ? 
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20.  A  10  pound  weight  is  placed  on  a  smooth  inclined  plane  of 
slope  1  in  5  and  is  connected  by  a  string  passing  over  a  smooth  pulley 
at  the  top  of  the  plane  to  a  pound  weight  which  hangs  by  the  string. 
Find  the  acceleration  of  the  10  pound  weight  and  the  tension  of  the 
string. 

21.  Two  inclined  planes  of  common  height,  3  feet,  and  of  lengths 
5  and  6  feet,  are  placed  back  to  back.  Weights  10  and  11  pounds 
are  placed  on  them  and  connected  with  a  string  passing  over  the  top. 
Find  the  acceleration  with  which  they  move  and  the  tension  in  the 
string. 

22.  An  engine  exerts  a  steady  pull  of  half  a  ton's  weight  on  a  train 
of  40  tons.  The  resistance  to  motion  is  15  pounds'  weight  per  ton  of 
the  train.  Find  the  acceleration  and  the  pull  on  the  last  carriage, 
which  weighs  4  tons. 

Attwood's  Machine. — Attwood's  machine  is  an  apparatus 
for  illustrating  the  laws  of  motion  and  for  investigating  ex- 

perimentally the  acceleration  due  to  gravity. 

It  must  be  noticed  clearly  that  the  experiments  that  can  be 
made  with  such  an  apparatus  as  this  are  not  proofs  of  the 
laws  of  motion;  they  only  show  that,  when  the  errors  which 
are  incidental  to  the  nature  of  the  apparatus  are  eliminated  as  far 
as  possible,  the  results  obtained  are  very  nearly  what  we  should 

expect  from  the  laws  of  motion.  Also  the  value  of  the  accelera- 
tion due  to  gravity  can  only  be  approximately  determined  by 

this  means  as  compared  with  the  accuracy  which  can  be  attained 
in  other  experiments. 

The  apparatus  has  for  its  main  parts : 

(1)  A  light  pulley,  running  on  very  smooth  bearings,  over 
which  can  pass  a  light  strong  cord. 

(2)  Masses  A  and  B,  which  are  attached  to  the  ends  of  the 
cord. 

(3)  Overweights  which  can  be  added  to  the  weight  yl,  the  one 
shown  at  C  being  in  the  form  of  a  bar. 

(4)  A  vertical  scale  H  by  which  the  motion  of  the  masses  may 
be  measured. 

(5)  Attachments  to  this  vertical  scale,  namely,  a  platform  Q 

for  A  to  fall  on,  a  ring  P  for  removing  C  at  any  desired  point  of 
the  motion  {P  and  Q  can  be  set  at  any  required  position  on  the 

scale),  and  an  arrangement  for  releasing  A  from  the  top  at  a 
definite  instant. 

(6)  A  clock  beating  seconds  audibly. 

I 
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I.  To  show  that  under  the  action  of  no  force  velocity 
is  uniform. 

The  masses  A  and  B  are  made 

equal,  so  that  the  system  A,  B 
would  move  under  the  action 

of  no  moving  force.  An  over- 
weight C  is  placed  on  A.  The 

ring  P  is  adjusted  so  as  to  re- 
move C  at  a  beat  of  the  clock. 

This  may  be  done  by  placing  P 
so  that  C  is  removed  just  one 
second  after  A  is  released,  A 
being  released  at  a  beat  of  the 
clock. 

Various  positions  are  then 
found  for  Q  such  that  A  reaches 

^  in  1,  2,  3,  ...  seconds  after  C 

is  removed  by  P.  It  is  found 

that  the  distances  which  A  passes 
over  between  P  and  Q  in  these 

times  are  proportional  to  1,  2, 
3,  —  Hence  the  velocity  of  the 

system  with  no  moving  force  is 
uniform. 

II.  To  show  that  the  ac- 
celeration produced  by  a 

given  overweight  acting  on 
given  masses  is  constant. 

This  is  done  by  showing  that 

the  velocity  generated  is  pro- 
portional to  the  time  for  which 

it  acts. 

A  and  B  are  made  equal. 

Various  positions  are  found 
for  P,  so  that  it  removes  C  in 

1,  2,  3,  ...  seconds  after  A  is 
released. 

Corresponding    positions    are         fig.  144.— Attwood's  machine. 
E.S.  Q 
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found  for  Q,  so  that  A  readies  it  always  one  second  after  C  is 

removed  by  P. 
The  distances  travelled  by  A  from  P  to  ̂   measure  the  velocities 

of  A  on  reaching  F  in  the  various  cases ;  and  these  are  found  to 

be  proportional  to  1,  2,  3,,..  seconds. 
Hence  the  velocities  generated  by  the  weight  of  C  in  the 

moving  system  are  proportional  to  the  times  for  which  this 

weight  acts,  that  is,  the  acceleration  is  uniform. 

III.  To  show  that  with  a  given  mass  in  motion  the  ac- 
celeration is  proportional  to  the  overweight. 

The  entire  mass,  that  is,  the  sum  of  A,  ̂ and  (7,  is  kept  constant, 

and  C  is  varied.  (This  may  be  done  by  removing  equal  amounts 
from  A  and  B  and  adding  the  quantities  removed  to  C.) 

The  velocities  generated  by  C  in  one  second,  in  the  various 
cases,  are  measured  as  before ;  that  is,  by  placing  P  to  remove  C 
in  one  second  after  A  is  released  and  by  placing  Q  to  receive  A 
in  one  second  after  C  is  removed. 

It  must  be  noticed  that  in  all  cases  the  mass  moved  by  the 

weight  of  Cis  the  sum  of  the  masses  oi  A,  B  and  C  and  not  of 
A  and  B  alone. 

It  is  found  that  the  velocities  generated  in  one  second  by  the 

weight  of  C  are  proportional  to  the  mass  and  thus  to  the  weight 
of  a 

IV.  To  prove  that  with  a  given  overweight  the  accelera- 
tions are  inversely  proportional  to  the  mass  moved. 

A  and  B  are  increased  by  equal  amounts  each  time,  keeping  C 

the  same.  The  velocities  generated  by  C  in  one  second  are 
measured  as  before.  These  are  found  to  be  inversely  as  the  sums 
of  the  masses  oi  A,  B  and  C. 

V.  To  show  that  with  a  given  mass  in  motion  and  a 
given  overweight  the  distance  passed  over  from  rest  is 
proportional  to  the  square  of  the  time. 

The  ring  P  is  removed,  and  positions  found  for  Q  to  receive 
A  1,  2,  3, ...  seconds  after  its  release.  The  distances  passed  over 

by  H  are  found  to  be  as  1,  4,  9,   

VI.  To  find  the  acceleration  of  a  freely  falling  body  due 
to  gravity. 

Let  A  and  B  be  each  of  mass  M,  and  C  of  mass  m.    If  g  is  the 

I 
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acceleration  of  gravity  in  the  units  used,  the  acceleration  of  the 
moving  system  is 

2M+m' 
This  is  measured  in  the  way  already  described  in  XL  Let  it 

be  a. 

Then  ,-^  =  «. 

_a(2M+m) 

^~        
m 

Necessary  Corrections. — There  are  several  causes  of  error  in 

experiments  made  with  Attwood's  machine. 
The  wheel,  although  very  light,  requires  some  effort  to  set  its 

mass  in  motion.  This  makes  the  velocity  at  any  instant  of  the 
moving  system,  and  its  acceleration,  less  than  the  theoretical 
value. 

The  friction  of  the  axle  on  the  bearings  has  to  be  overcome, 
and  this  further  reduces  the  velocity  of  the  motion. 

The  air  offers  a  slight  resistance  to  the  masses  moving 
through  it. 

The  mass  of  the  string  produces  a  slight  effect,  as  it  has  to  be 
set  in  motion ;  and  when  there  is  more  of  it  on  one  side  than  on 

the  other,  the  difference  of  weights  of  the  two  parts  is  a  force 

concerned  in  the  motion,  helping  or  hindering  it. 
The  method  of  measuring  the  times  is  a  very  rough  one,  and, 

as  the  times  to  be  measured  are  all  very  short,  only  a  few  seconds, 
the  errors  made  in  the  measurements  may  be  considerable  as 

compared  with  the  quantities  to  be  measured. 

Exercises  XV.  c. 

[The  First  Six  Questions  are  on  Attwood's  Machine.] 
L  If  each  of  the  masses  is  1  lb.  find  the  overweight  in  ounces  in 

order  that  a  velocity  of  one  foot  per  second  may  be  acquired  in  one 
second. 

2.  With  an  overweight  of  10  grams,  what  must  the  mass  on  each 

side  be  that  the  acceleration  may  be  '5  metre  per  second  per  second  ? 

3.  What  is  the  ratio  of  overweight  to  each  mass  to  cause  accelera- 
tion k  ? 
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4.  What  is  the  ratio  of  overweight  to  each  mass  to  cause  accelera- 

tion |? 

5.  If  the  entire  mass  moved,  including  the  overweight,  is  two 
pounds,  what  must  the  overweight  be  and  what  must  each  mass  be 
to  cause  an  acceleration  of  1  foot  per  second  per  second  ? 

6.  If  the  overweight  is  Yoiy  o^  each  mass,  in  what  time  will  the 
system  move  through  2  metres  ? 

7.  A  mass  of  5  lbs.  is  resting  on  a  smooth  horizontal  plane.  How 
many  poundals  must  there  be  (i)  in  the  horizontal  force  which, 
acting  on  the  mass,  will  give  it  a  velocity  of  8  feet  per  second  in  ̂  
of  a  second  ;  and  (ii)  the  vertical  force  which  will  cause  the  mass  to 
ascend  with  an  acceleration  of  7  ft.  per  second  per  second.  (Coll. 
Precep.,  1898.) 

8.  Horizontal  forces,  equal  respectively  to  a  3  pound  weight  and  a 
4  pound  weight,  act  on  a  mass  of  6  lb.  placed  on  a  smooth  horizontal 
table,  the  directions  of  the  forces  making  with  each  other  an  angle 

of  60°.  Prove  that  the  mass  will  move  with  an  acceleration  greater 
than  that  of  a  falling  body      (Coll,  Precep.,  1898.) 

9.  A  train  of  mass  100  tons  starts  from  rest.  What  force  must 
the  engine  exert  if  the  train  is  to  acquire  a  speed  of  15  miles  per  hour 
in  the  course  of  half  a  minute,  the  rate  of  increase  being  uniform  ? 

The  total  resistance  is- 10  lbs.'  wt.  per  ton,  the  lines  being  level  and 
straight.     (Coll.  Precep.,  1897.) 

10.  A  particle,  of  mass  2  lbs. ,  on  a  smooth  plane  inclined  at  60°, 
is  drawn  up  by  a  particle,  of  mass  6  lbs. ,  which  descends  vertically. 
The  two  particles  are  connected  by  a  fine  inextensible  string  pass- 

ing over  a  small  smooth  peg  at  the  top  of  the  plane.  Find  the 
tension  of  the  string  and  the  acceleration  of  the  particles.  (Coll. 
Precep.,  1897.) 

11.  A  force  equal  to  the  weight  of  2  lbs.,  acting  on  a  certain  mass, 
moves  it  from  rest  over  100  feet  in  5  seconds.  What  is  the  mass  ? 
(Coll.  Precep.,  1897.) 

12.  Two  particles,  whose  masses  are  P  and  Q,  are  connected  by  a 
fine  thread  ;  Q  is  placed  on  a  horizontal  table,  and  P  hangs  over 
the  edge  ;  there  is  no  friction  ;  if  P  is  allowed  to  fall,  find  the 
acceleration. 

If  P  is  1  lb.  and  Q  is  7  lbs.,  find  how  long  it  would  take  P  to  fall 
through  the  first  3  feet  of  its  descent.     (Science  and  Art,  1897. ) 

13.  Two  particles,  whose  masses  are  15  and  9  lbs.,  are  connected 

by  a  fine  thread  which  passes  over  a  smooth  point  (as  in  Attwood's 
machine) ;  if  they  are  allowed  to  move,  find  the  acceleration  of  the 
velocity  and  the  tension  of  the  thread.     (Science  and  Art,  1899.) 
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14.  A  particle,  whose  mass  is  4  grams,  is  acted  on  by  two  forces 
— 4  dynes  due  north  and  8  dynes  due  east.  What  is  the  magni- 

tude of  the  resultant  acceleration  produced  in  it  ?  (Oxford  Locals, 
1899.) 

15.  Suppose  a  mass  of  10  tons  moving  at  880  feet  per  minute  to 
be  acted  on  for  5  minutes  by  a  force,  acting  in  the  direction  of 
motion,  such  that  during  the  time  of  its  operation  the  speed  is 
changed  to  one  of  8  miles  per  hour  :  find  the  mean  values  of  the 
acceleration  and  of  the  force.  State  in  what  units  your  answers  are 
expressed.     (London  Matric,  1899.) 

16.  What  is  the  British  absolute  unit  of  force?  Express  in  terms 
of  this  unit  a  force  equal  to  the  weight  of  1  lb. 

A  force  equal  to  the  weight  of  ̂   oz.  acts  upon  a  mass  of  2  lbs. , 
find  the  velocity  of  the  mass  after  it  has  traversed  4  feet.  (Oxford 
Locals,  1897.) 

17.  Describe  some  way  of  causing  a  mass  of  1  lb.  to  be  acted  on 
by  a  force  equal  to  one-sixteenth  of  its  weight,  and  find  the  velocity 
acquired  by  the  body  under  such  circumstances  when  it  has  moved 
from  rest  through  a  distance  of  one  foot.  (Camb.  Jr.  Loc,  Stat. 
Dyn.  and  Hydro.,  1897.) 

18.  A  carriage  weighing  1  lb.  is  placed  on  a  smooth  horizontal 
table  and  has  attached  to  it  a  string  which  passes  over  a  pulley  fixed 
to  the  edge  of  the  table,  A  weight  of  1  oz.  is  tied  to  the  end  of  the 
string.  If  the  carriage  is  hel^  a  yard  from  the  edge  of  the  table  and 
then  let  go,  find  how  long  it  will  take  in  reaching  the  edge.  (Camb. 
Sr.  Loc,  Stat.  Dyn.  and  Hydro.,  1897.) 

19.  A  force  equal  to  the  weight  of  10  lbs.  acts  on  a  body  for  5 
seconds.  By  how  much  will  the  momentum  of  the  body  be  changed 
during  this  time?     (Camb.  Sr.  Loc,  Stat.  Dyn.  and  Hydro.,  1898.) 

20.  Two  masses  of  weights  2  and  2^  lbs.  are  connected  by  a  light 
string  which  passes  over  a  pulley.  Find  the  acceleration  with  which 
the  larger  weight  descends,  and  the  space  through  which  it  moves 
in  the  first  5  seconds  of  its  motion.     (Camb.  Jr.  Loc,  Mech.,  1898.) 

Summary. 

The  weight  of  a  body,  or  the  force  with  which  the  earth  attracts 
it,  can  be  determined  in  dynamical  measure  if  we  know  the  mass  of 
the  body  and  the  acceleration  which  its  weight  gives  to  it,  or  with 
which  it  falls  freely. 

In  any  system  of  units,  if  m  is  mass,  g  the  acceleration  due  to 
gravity,  and  w  the  weight, W  —  mg. 

Thus  the  weight  of  a  pound  is  32  poundals,  and  the  weight  of  a 
gram  is  981  dynes. 
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All  bodies  fall  with  equal  rapidity  :  therefore  all  bodies  have 
weights  proportional  to  their  masses. 

Attwood's  Machine  is  an  apparatvis  for  illustrating  the  laws  of 
motion  and  for  determining  the  acceleration  due  to  gravity. 

It  consists  mainly  of  a  light  smooth  pulley  over  which  passes  a 
string  carrying  weights  at  its  ends.  The  magnitudes  of  these 
weights  can  be  adjusted.  There  are  also  fittings  to  the  machine  for 
checking  the  motion  of  the  weights  at  any  instant. 

The  results  obtained  by  Attwood's  machine  are  only  to  be  regarded 
as  approximate.  The  laws  of  motion  are  much  more  exactly  (though 
indirectly)  demonstrated  by  observations  on  the  heavenly  bodies. 
And  the  value  of  g  is  much  more  exactly  found  by  means  of  other 
experiments. 



CHAPTER  XVI. 

IMPULSE.      NEWTON'S  THIRD  LAW  OF  MOTION. 

Momentum  produced  by  a  Force. — Suppose  that  a  force  of 
f  units  acts  on  a  body  of  mass  m  and  causes  in  it  an  acceler- 

ation of  a  units.     Then  we  have  the  relation 
f=ma. 

Let  t  be  the  time  for  which  the  action  takes  place.  From  the 
above  ft = mat. 

If  V  is  the  velocity  produced  in  m  by  the  action  of  f,  v  =  at. 
Hence  ft=mv. 

Or,  the  momentum  produced  by  the  force  is  equal  to  ft. 
We  see  that  the  momentum  produced  by  the  force  f  acting 

for  a  time  t  is  the  same,  whatever  be  the  mass  on  which  it  acts. 

Suppose  the  force  not  to  remain  constant  during  the  time  for 
which  it  acts.  Imagine  the  time  to  be  divided  into  a  number  of 

intervals  ̂ j,  t^^  %  etc.,  during  each  one  of  which  the  force  may 
be  supposed  to  retain  a  constant  value.  Let  the  values  of  the 

force  in  these  interval^  be  fj,  fg,  £3,  etc.  Then,  if  the  accelera- 
tions of  m  during  the  intervals  are  «],  ao,  ̂ s,  etc., 

fi=mai, 

and  so  for  the  others  ; 

.'.     fi^i  +f2^2  +  f3^3+  ...  =m{ayt^  +  ̂2^2  +  %^3+  •  •  •)• 
But  a^t^  +  ̂2^2  +  •  •  •  i^  ̂ ^e  entire  velocity  added,  v,  and  if  the 

mean  value  or  time  average  of  the  force  is  f, 

..   ft  =  mv, 
the  same  equation  as  before. 



218  ELEMENTARY  MECHANICS  OF  SOLIDS. 

It  should  be  noticed  that,  in  these  results,  v  is  the  velocity 

and  mv  the  momentum  communicated  to  the  body  by  the  action 

of  the  force  f.  And  the  results  are  ti'ue  whether  the  body  has 
a  velocity  before  the  action  of  f  or  not.  We  may  call  v  the 
added  velocity  in  the  direction  of  f. 

Suppose,  however,  that  the  body  has  an  initial  velocity  u,  and 
that  V  is  its  final  velocity,  both  measured  in  the  direction  in 
which  f  acts,  then 

V   {=ma,  so  that  ft  =  mat,  and  v=u  +  at,  so  that  at  =  v  —  u; 

:.  ft=m{v-u). 

This  equation  is  frequently  of  use  in  solving  qtiestions  about 

the  action  of  a  force  and  the  time  for  which  it  acts.  The  ques- 
tions to  which  it  is  applicable  could  also  be  solved  by  means  of 

the  fundamental  formula  of  Dynamics,  f=ma,  combined  with 
the  kinematical  equations ;  but  the  work  may  sometimes  be 
much  shortened  by  its  use. 

The  equation  may  be  called  the  momentum  equation. 

^XAMPLE. — For  what  time  must  a  force  of  2  lbs.'  wt.  act  on 
a  body  of  mass  1^  tons  to  give  it  a  velocity  of  12  feet  per 
second  ? 

Let  t  seconds  be  the  time. 

The  force  is  64  poundals. 

Then,  by  ft=mv, 

64;;  =  l|x  2240x12; 
3x2240x12 

*=       2x64       =^- 
Required  time  is  630  sees.,  or  10  mins.  30  sees. 

Momentum  is  susceptible  of  Sign.— In  using  the  complete 
momentum  formula,  ft  =  m{v  —  u\  the  signs  of  the  quanities  are 
likely  sometimes  to  prove  troublesome,  and  great  care  must  be 
taken  about  them. 

In  many  cases  it  will  be  sufficient  to  consider  the  entire 

change  of  momentum,  and  to  notice  that  this  is  in  the  sense  of 
the  force,  and  equal  to  the  product  of  force  and  time. 

It  should  be  noticed  that  momentum,  like  velocity,  is  a 

quantity  susceptible  of  sign,  so  that   to   destroy   momentum 
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which  exists  in  one  sense  is  equivalent  to  communicating  an 
equal  amount  in  the  opposite  sense. 

The  various  cases  which  can  occur  may  be  stated  in  greater 
detail  as  follows  : 

(i)  If  the  force  acts  in  the  sense  of  the  initial  velocity,  or, 
if  this  is  zero,  force  x  time  is  equal  to  the  amount  of  momentum 

produced. 
(ii)  If  the  force  acts  in  the  sense  opposite  to  the  initial 

velocity,  and  reduces  it  or  makes  it  zero,  force  x  time  is  equal  to 

the  amount  of  previously  existing  momentum  destroyed. 
(iii)  If  the  force  acts  in  the  sense  opposite  to  the  initial 

velocity  and  reverses  it  (that  is,  ultimately  causes  the  body  to 
move  in  the  sense  of  the  force),  force  x  time  is  equal  to  the  sum 

of  the  previously  existing  momentum  destroyed  and  the  opposite 
momentum  produced. 

All  these  cases  are  covered  by  the  single  statement 

force  X  time = momentum  produced  in  sense  of  force^ 

or  by  its  algebraical  equivalent,  the  momentum  equation. 

Example. — A  body  of  mass  5  lbs.,  moving  with  a  velocity 
of  10  feet  per  second,  meets  with  a  resistance  which  acts 
on  it  for  half  a  second  and  reduces  its  velocity  to  8  feet 

per  second.     What  is  the  resistance  ? 

Body's  loss  of  momentum,  or  momentum  communicated  in 
direction  of  force,  =5(10 -8)  =  10  units. 

Let  force  be  f  poundals. 

Then  f.|  =  10. 
.-.   f=20. 

The  force  is  20  poundals. 

In  other  cases  it  will  be  necessary  to  use  the  equation  and  to 

have  a  clear  understanding  about  the  signs  of  all  the  quantities 
involved.  In  such  cases  the  following  is  probably  the  best 

plan. 
Always  consider  f  positive  (as  we  have  done  in  using  the 

equation  t=ma)  ;  and  reckon  u  and  v  positive  if  in  the  sense  of 
f,  negative  if  in  the  opposite  sense,  m  and  t  are,  of  course, 

always  positive. 
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The  above  example  may  be  used  to  illustrate  this,  but  the 

solution  will  be  less  simple  than  that  already  given. 

Let  the  force  be  f  poundals. 

Use  the  formula  ft=7n{v  —  u). 

Here  u=  -10,  v=  -8,  both  velocities  being  opposite  to  the 
direction  in  which  f  acts. 

.-.    f.i  =  5{-8-(-]0)} 

=  5(-8  +  10)  =  10. 
.-.    f=20. 

The  force  is  20  poundals. 

In  the  two  following  examples  the  full  formula  must  be  used, 
due  regard  being  had  to  the  signs. 

Example, — A  body  of  mass  5  lbs.,  moving  with  a  velocity 

of  10  feet  per  second,  is  acted  on  by  a  force  of  40  lbs.'  wt. 
opposite  to  the  direction  of  its  motion  for  half  a  second. 

What  is  the  velocity  of  the  body  at  the  end  of  this  time  ? 

Let  the   required  velocity  be  v   feet  per  second  in   the 
direction  in  which  the  force  acts. 

The  original  velocity  in  the  same  direction  is  - 10  feet  per 
second. 

.'.   by  it=m{v-u\ 
40.32.|  =  5(v  +  10), 

5  (v  + 10)  =  640, 

v  +  10=128, 

v  =  118. 

The  required  velocity  is  118  feet  per  second  in  the  sense 
opposite  to  the  original  velocity. 

Example. — A  body  of  mass  5  lbs.,  moving  with  a  velocity 

of  10  feet  per  second,  meets  with  a  resistance  of  3  lbs.' 
wt.,  which  acts  on  it  for  half  a  second.  What  is  the 

velocity  of  the  body  at  the  end  of  this  time  ? 

Let  the  required  velocity  be  v  feet  per  second  in  the  direction 
of  the  force. 
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Then  by  the  formula  ft  =  m  {v  -  u), 
3.32.^  =  5(^  +  10), 

5(v+10)  =  48, 

v+ 10  =  9-6, 

v=  —'4. 

The  required  velocity  is  '4  feet  per  second  in  the  direction 
in  which  it  was  first  moving. 

In  any  case  of  this  sort  the  result  may  be  checked  by  con- 
sidering  that   the   momentum  communicated  must  be  in  the 

direction  of  the  force  and  equal  to  the  product  ft. 

Thus  in  the  last  example  but  one  : 

Mom.  communicated  =  5  (118 +  10)  =  640. 

Product  ft  =  40.  32.^  =  640. 

In  the  last  example, 

Mom.  communicated  =  5  (10 -'4)  =  48. 

ft  =  3.  32.^  =  48. 

Example. — A  mass  of  5  lbs.  falls  from  a  height  of  9  feet 

on  the  ground  and  is  brought  to  rest  in  ̂ ^  of  a  second. 
What  is  the  mean  resistance  of  the  ground  ? 

The  velocity  of  the  mass  just  before  striking  the  ground  is 

V32  .  18  ft.  per  sec.  =  24  ft.  per  sec. 
Let  the  required  resistance  be  f  poundals. 

The  resultant  upward  force  acting  on  the  body  while  it 
comes  to  rest  is 

f-5  .  32  poundals. 

This  force  acts  for  j^q  sec.  and  destroys  downward  momentum 
5 .  24  units. 

.-.    (f-5.32)J^  =  5.24, 
f=  5.  32  +  1200 
=  1360. 

Eequired  resistance  is  1360  poundals  or  42^  lbs.'  weight. 
[By  the  conditions  of  this  question  it  is  clear  that  the  weight 

of  the  body  is  a  force  concerned  in  its  motion,  while  it  comes  to 

rest,  and  therefore  it  has  been  taken  into  account.] 
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Exercises  XVI.  a. 

L  What  force  must  act  on  a  body  of  20  pounds  mass  to  give  it  a 
velocity  of  20  feet  per  second  in  2  seconds  ? 

2.  For  how  long  must  a  force  of  1  pound's  weight  act  on  a 
hundredweight  to  increase  its  velocity  by  5  feet  per  second  ? 

3.  What  mass  will  have  its  velocity  changed  from  5  feet  per 
second  to  8  feet  per  second  in  the  opposite  direction  by  means  of  a 

force  of  112  pounds'  weight  acting  for  26  seconds  ? 
4.  An  ounce  mass  moving  with  a  velocity  of  50  feet  per  second  is 

brought  to  rest  by  22  tons'  weight.     In  what  time  is  this  done  ? 
5.  A  half  pound  ball  is  struck  so  that  it  begins  to  move  with  a 

velocity  of  120  feet  per  second.  What  is  the  magnitude  of  the  force 
acting  on  the  ball  if  it  lasts  for  ̂   second  ?  and  what  if  it  lasts  for 

I^Q  second  ? 

6.  A  body  of  mass  2  tons  is  acted  on  by  a  force  of  7  pounds' 
weight  for  20  seconds  and  is  then  moving  at  7  feet  per  second  in  the 
direction  of  the  force.     How  was  it  moving  at  first  ? 

7.  A  piece  of  wood  of  mass  2  pounds  falls  and  reaches  the  surface 
of  water  with  a  velocity  of  20  feet  per  second.  It  sinks  through 
the  water  for  1^  seconds.  What  is  the  mean  upward  pressure  of  the 
water  against  it  ? 

8.  A  ball  weighing  5  ounces  is  thrown  up  against  the  ceiling, 
which  it  reaches  with  a  velocity  of  5  feet  per  second,  and  rebounds 
with  a  velocity  of  3  feet  per  second.  If  the  ball  is  in  contact  with 

the  ceiling  y2  of  a  second,  with  what  average  pressure  in  ounces' 
weight  does  the  ceiling  press  it  down  ? 

Impulse. — If  a  very  large  force  acts  for  a  very  short  time,  as, 
for  instance,  in  the  case  of  a  cricket  bat  driving  a  ball,  the  force 
is  called  an  impulsive  force.  Such  a  force  is  not  of  a  different 

nature  from  the  other  forces  which  we  consider  in  Mechanics ;  it 

only  differs  from  these  in  magnitude  and  in  the  time  for  which 
it  acts. 

In  the  case  of  an  impulsive  force,  it  is  generally  difficult  or 
impossible  to  estimate  the  value  of  the  force  or  the  time  for 

which  it  acts ;  and  indeed,  as  a  rule,  the  force  varies  considerably 
during  its  action.  It  is,  however,  of  more  importance  to  know 

the  effect  produced  by  the  force,  or  the  momentum  generated  by 
it.  This  is  called  the  impulse  of  the  force  ;  and  the  term  is 
sometimes  used  in  connexion  with  other  forces  besides  those 

which  are  impulsive. 
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The  impulse  of  a  force  is  the  product  of  the  mean  value 
of  the  force  and  the  time  for  which  it  acts:  this  is  also 
equal  to  the  momentum  generated  by  the  force. 

The  word  blow  is  also  used  sometimes  to  mean  the  measure  of 

an  impulse. 
Note  that  a  force  is  measured  by  the  rate  at  which  it  generates 

momentum  or  the  momentum  which  it  generates  'per  unit  of  time  ; 
an  impulse  is  measured  by  the  entire  momentum  which  it  generates. 

Exercises  XVI.  b. 

1.  What  impulse  will  cause  a  2  pound  mass  to  move  with  a 
velocity  of  15  feet  per  second  ? 

2.  W^hat  is  the  magnitude  of  the  impulse  which  brings  a  mass  of 
2^-  kilos.,  moving  with  a  velocity  of  12  metres  per  second,  to  rest? 

3.  A  4  pound  ball  is  struck  so  that  it  moves  off  with  a  velocity  of 
20  feet  per  second.  What  is  the  mean  value  of  the  force  if  it  acts 

for  6^0  second  ? 
4.  A  ball  weighing  half  a  pound  moving  at  25  feet  per  second 

strikes  a  wall  and  comes  to  rest.     What  is  the  impulse  on  the  ball  ? 
5.  If  the  same  ball  rebound  from  the  wall  with  a  velocity  of  10 

feet  per  second  instead  of  coming  to  rest,  what  is  the  blow  on  it  from 
the  wall  ? 

Reaction  between  two  Bodies.— If  a  body  A  presses  on 
another  ̂ ,  B  presses  against  A  in  exactly  the  opposite  direction 
and  with  a  force  exactly  equal  to  that  which  A  exerts  against  B. 

If  A  acts  on  B  in  any  manner  B  reacts  on  A  with  an  equal  force 

in  the  opposite  direction. 

This  principle  we  have  already  employed  in  Statics,  and  in 
certain  questions  in  Dynamics,  about  bodies  connected  by  strings. 
It  is  universally  true,  whether  the  bodies  A  and  B  are  at  rest  or 
in  motion.     It  is  contained  in  the  following : 

Newton's  Third  Law  of  Motion. — To  every  action  there 
is  an  equal  and  contrary  reaction. 

It  is,  perhaps,  not  easy  to  realize  that  this  is  always  true,  in 
cases  of  motion  as  well  as  in  cases  of  rest.  It  may  seem,  at  first, 

natural  to  suppose  that,  if  a  body  A  begins  to  move  in  a  straight 
line,  drawing  a  body  B  after  it,  the  force  which  A  exerts  on  B  is 

greater  than  that  which  B  exerts  on  A  to  keep  it  back.  But,  in 
fact,  these  two  forces  are  exactly  equal,  and  there  must  be  some 
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force  acting  on  A  which  is  greater  than  that  which  A  exerts  on 

B  by  just  the  amount  which  is  required  to  set  A  in  motion  in  the 

given  manner. 
If  a  horse  draws  a  cart  the  force  which  he  exerts  on  the  cart  is 

equal  to  that  with  which  the  cart  pulls  him  back.  If  an  engine 
draws  a  train  it  exerts  a  force  which  is  just  equalled  by  that  with 

which  the  train  pulls  it  back.  But  what  we  may  call  the  effective 

force  acting  on  the  engine,  due  to  the  steam  pressure,  is  greater 
than  the  force  which  it  exerts  on  the  train,  or  which  the  train 

exerts  on  it  by  just  the  amount  which  is  necessary  to  move  the 

engine  in  the  way  in  which  it  is  moving. 

The  matter  may  be  further  illustrated  by  the  following  ex- 
ample. Suppose  that  an  engine  is  drawing  two  identical  carriages 

A  and  B.  Suppose  that  A  pulls  B  with  a  force  f  units.  B  pulls 
A  back  with  a  force  f  units.  But  a  resultant  force  f  units  is  re- 

quired for  the  motion  of  A.  Hence  the  force  with  which 

the  engine  acts  on  ̂   is  2  f  units.  Of  this  2  f  units  of  force 

applied  directly  to  A  we  may  consider  that  f  units  are  employed 
to  produce  its  motion  and  the  other  f  units  go  to  produce  the 
motion  of  B. 

Suppose  two  bodies  to  act  on  each  other  with  a  given  force  of 
action  between  them  for  a  given  time,  and  so  to  set  each  other  in 

motion.  Then,  since  the  forces  acting  on  the  bodies  are  equal 

and  the  times  for  which  they  act  are  equal,  and  since  the  mo- 
mentum produced  by  a  force  is  equal  to  the  product  of  force  and 

time,  it  follows  that  the  momenta  generated  in  the  two  bodies  in 

opposite  directions  are  equal  to  each  other  in  magnitude. 
This  may  be  expressed  in  symbols  as  follows. 

Suppose  two  bodies  of  masses  m,  M  to  act  on  each  other  with  a 
force  f  for  a  time  t. 

Let  V,  V  be  the  velocities  generated  in  the  two  bodies  (these 

being  measured  in  opposite  senses). 

Then,  since  f^=mv,  and  f^  =  i/'F,      .•.    mv  =  MV. 
Again  we  may  suppose  that  the  force  of  action  between  the 

two  bodies  does  not  remain  constant  during  the  time  of 
action. 

If  the  time  average  of  the  force  is  /,  we  still  have, 

ft=mv,  and  tt=MV. 
:.   mv =MV. 
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Further,  it  is  not  necessary  that  the  bodies  should  have  been 

originally  at  rest ;  v  and  V  may  be  regarded  as  the  velocities 

communicated  to  the  bodies  by  their  inter-action,  whether  they 
had  other  velocities  before  or  no.  In  this  case  mv,  MV  are  not 
the  final  momenta  of  the  bodies,  but  the  momenta  due  to  the 
action. 

The  result  may  be  put  in  words  as  follows  : 

Any  inter-action  between  two  bodies  generates  in  them 
equal  momenta  in  opposite  directions. 

Of  course  it  is  supposed  that  the  bodies  are  not  acted  upon  by 

any  other  forces  than  those  due  to  the  action  between  them,  be- 
cause then  in  considering  the  momentum  given  to  either  body  we 

should  have  to  consider  all  the  forces  acting  on  it.  If,  for 
instance,  one  of  the  bodies  is  rigidly  fixed,  no  momentum  can  be 

generated  in  it,  as  the  fixings  will  always  supply  just  enough 
force  to  prevent  this. 

The  principle  here  given  is  one  of  very  great  importance  in 
Mechanics,  and  examples  of  it  frequently  occur. 

If  a  gun,  free  to  move  on  a  horizontal  plane,  discharges  a 
shot,  the  momenta  with  which  the  gun  and  the  shot  move  off 

are  equal. 

As  an  example  of  an  inter-action  of  the  nature  of  a  pull,  if 
two  carriages  on  a  perfectly  smooth  horizontal  plane  and  some 
distance  apart  exert  a  pull  on  each  other  by  means  of  a  rope, 
they  will  then  be  moving  towards  each  other  with  equal 
momenta. 

The  principle  may  also  be  stated  in  another  way  which  is  more 

convenient  for  some  purposes.  Since  momentum  is  a  quantity 
which,  like  velocity,  has  direction,  and  may  therefore  be  regarded 

as  having  positive  or  negative  sign,  according  to  the  sense  of 
the  velocity  involved  in  it,  we  must  consider  two  momenta  in 

opposite  directions  along  a  straight  line  to  have  opposite  alge- 
braical signs.  Hence,  the  algebraical  sum  of  two  equal  and 

opposite  momenta  along  a  straight  line  is  zero.  And  the  two 

momenta  caused  by  any  inter-action  between  two  bodies  have  a 
zero  algebraical  sum. 
We  may  state  this  as  follows  : 
The  entire  change  in  the  joint  momentum  of  two  bodies 

due  to  any  inter-action  between  them  is  zero. 
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Example. — A  gun  weighing  80  tons  discharges  a  shot  of 
100  lbs.  with  a  velocity  of  600  feet  per  second.  What  is 

the  velocity  with  which  the  gun  recoils  ? 

Let  V  feet  per  second  be  the  required  velocity. 
Then  since  momenta  of  gun  and  shot  are  equal,  we  have 

80  X  2240  X  V=  100  x  600  ; 

Tr__6  0  0      _    7S 

8X2  24        2  2  4- 

Eequired  velocity  is  ~~  feet  per  second. 

Example. — A  ball  of  mass  2  lbs.,  moving  with  a  velocity  of 
7  feet  per  sec.  strikes  against  another  of  mass  6  lbs.,  which 

is  originally  at  rest,  and  rebounds  with  a  velocity  of  2  feet 

per  sec.     "With  what  velocity  does  the  second  ball  go  on  ? 
The  first  ball  has  at  first  2  .  7  units  of  momentum. 

After  the  blow  it  has  2  .  2  units  of  momentum  in  the  opposite 
direction. 

.".    the  blow  has  given  to  it  2  .  9  units  of  momentum. 

.'.    the  second  ball  also  acquires  2 . 9  units  of  momentum. 
If  the  required  velocity  of  the  second  ball  is  v  ft.  per  sec, 

ev  =  2  .9. 

.-.    v  =  3. 

Required  velocity  is  3  ft.  per  sec. 

Alternative  method :    this  question  might  be  solved  by  con- 
sidering that  the  entire  momentum  in  the  line  of  the  motion  of 

the  system,  consisting  of  the  two  balls,  remains  unchanged. 

Let  V  feet  per  second  be  the  required  velocity. 
Then,  since  the  entire  momentum  in  the  line  in  which  the 

balls  move  is  the  same  after  as  before  the  impact, 

6^-2.2  =  2.7. 

.-.    v  =  3. 

Example. — A  ball  of  mass  2  lbs.,  moving  with  a  velocity  of 
7  feet  per  second,  strikes  against  a  ball  of  mass  6  lbs.  at 

first  at  rest,  and  the  two  go  on  moving  together.  What 
is  their  common  velocity  ? 
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Let  y  feet  per  second  be  the  required  velocity. 

Then,  equating  momenta  before  and  after  impact, 

(2  +  6)^  =  2.7. v  =  l|. 

Velocity  is  If  ft.  per  sec. 

Example. — Two  balls  of  masses  6  and  2  move  towards  each 

other  with  velocities  4  and  5.  They  collide  directly,  and 
continue  to  move  in  the  straight  line  in  which  they  were 

first  moving  ;  and  their  relative  velocity  of  separation 
after  the  impact  is  one  half  of  their  velocity  of  approach 
before  impact.  Find  the  velocities  after  impact,  and  the 
measure  of  the  impulse. 

Let  the  required  velocities  be  lo  and      — >4 

V,  measured  in  the  sense  in  which     /^'^N  ^/^ the  ball  6  was  first  moving.  I  )  v_y 

Denote  the  balls  and  their  velocities      j   ^J^  ^"^ 
as  in  the  figure.  Fia.  145. 

Velocity  of  approach   =4  +  5  =  9. 

Velocity  of  separation=v-?^. 

.-.   ̂ _u  =  ̂ .9  =  U   (1) 

Equating  momenta  before  and  after  impact, 

6^*  +  2v  =  6.  4-2.  5  =  14, 

3u-\-  v  =  1   (2) 

From  equations  (1)  and  (2), 

4^=21 

^  =  4*  +  f  =  5i 
The  required  velocities  are  f  and  5|  units,  both  in  the 

sense  in  which  the  ball  6  was  first  moving. 
The  impulse  gives  the  ball  of  mass  6  a  velocity  of 

4  -  I  =  3§  units. 

.-.    measure  of  impulse  is  6 .  3f  =  20^  F.P.S.  units. 
[Or,  since  impulse  gives  to  mass  2  a  velocity  of  5  +  5^  =  10^ 

units,  its  measure  is  2  .  10|  =  20|  units,  as  b:)fore.] 
E.S.  B 
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Example.— A  body  of  mass  10  grams  moving  at  4  cms.  per 
sec.  strikes  a  body  of  mass  15  grams,  and  the  two  go  on 
moving  together.  What  force  is  necessary  to  bring  them 
to  rest  in  3  sees.  ? 

Combined  momentum  of  the  bodies 

= original  momentum  of  the  10  grams 
=  10.4  units. 

Let  f  dynes  be  the  required  force. 

Then  f.  3  =  10.4. 

Esquired  force  =  13^  dynes. 

Notice  that  the  given  number  15  does  not  come  into  the 
solution.  The  two  bodies  would  go  on  with  the  original 
momentum  of  the  first  whatever  be  the  mass  of  the  other. 

Exercises  XVI,  c. 

1.  A  gun  of  mass  8  lbs.  discharges  a  |--oz.  bullet  with  a  velocity 
of  1200  feet  per  second.     With  what  velocity  does  the  gun  recoil  ? 

2.  An  ounce  bullet  is  fired  into  a  block  of  wood  weighing  36  lbs. 
and  lodges  in  it  ;  the  wood  begins  to  move  off  with  a  velocity  of  2 
feet  per  second.     What  was  the  velocity  of  the  bullet  ? 

3.  A  kilogram  mass  moving  with  a  velocity  of  10  metres  per 
second  overtakes  and  strikes  a  mass  of  50  grams  moving  with  a 
velocity  of  5  metres  per  second.  If  after  the  impact  the  50  grams 
mass  moves  with  velocity  10  metres  per  second,  what  happens  to 
the  kilogram  ?     And  what  is  the  measure  of  the  blow  ? 

4.  A  7-lb.  weight  moving  at  the  rate  of  10  feet  per  second  meets 
and  strikes  a  cwt.  moving  2  feet  per  second,  and  rebounds  with 
a  velocity  of  4  feet  per  second.  What  is  then  the  velocity  of 
the  cwt.? 

5.  A  hammer  of  mass  M  lbs.  moving  at  V  feet  per  second,  strikes 
a  nail  of  mass  m  lbs.  and  drives  it  into  a  piece  of  wood,  the  hammer 
not  rebounding  from  the  nail.  The  resistance  of  the  wood  to  pene- 

tration is  N  lbs.'  wt.  Show  that  the  penetration  continues  for  a 
time  M  VjNg  of  a  second. 

6.  A  4-oz.  ball  is  struck  so  that  it  moves  with  a  velocity  of  400 

feet  per  second.  If  the  mean  force  of  the  blow  is  1000  lbs.'  wt.,  for 
how  long  does  it  last  ? 

I 
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Summary. 

The  momentum  generated  by  a  constant  force  in  a  given  time  is 
equal  to  the  product  of  the  force  and  the  time. 

The  momentum  generated  by  a  variable  force  in  a  given  time  is 
equal  to  the  product  of  the  time  average  of  the  force  and  the  time. 
Impulse.  A  very  large  force,  like  that  with  which  a  cricket  bat 

drives  a  ball,  is  called  an  impulsive  force.  It  is  not  necessary  or,  as 
a  rule,  possible  to  estimate  the  magnitude  of  such  a  force  or  the  time 
of  its  action.  It  is  important  to  know  its  effect  or  the  momentum 
which  it  produces.  This  is  equal  to  the  product  of  its  mean  value, 
or  time  average,  and  the  time,  and  is  called  its  impulse. 

Impulse,  is  a  term  sometimes  used  in  connexion  with  ordinary 
forces,  not  impulsive,  to  denote  the  momentum  generated. 

Blow  means  the  same  as  impulse. 
If  a  body  A  exerts  any  force  on  another  body  B,  B  exerts  an  equal 

and  opposite  force  on  A.     This  is  expressed  in 

Newton's  Third  Law  of  Motion. 

To  every  action  there  is  an  equal  and  contrary  reaction. 
It  follows  that  if  any  action  takes  place  beticeen  two  bodies  they 

cominunicate  to  each  other  equal  and  opposite  momenta. 
Thus,  when  a  gun  free  to  moAC  backwards  discharges  a  shot,  the 

shot  and  gun  have  equal  momenta  in  opposite  directions. 
This  principle  is  true  even  when  the  bodies  had  momenta  before 

the  action.  In  this  case  the  additional  momenta  communicated  are 
equal  and  opposite. 

It  follows  that  if  any  inter-action  takes  place  betiveen  two  bodies  the 
entire  algebraical  change  in  their  joint  momentum  is  zero. 



CHAPTER  XVII. 

KINETIC  ENERGY. 

Kinetic  Energy. — Suppose  that  a  body  of  mass  m,  originally 
at  rest,  is  acted  on  by  a  force  f  through  a  distance  s,  and  thus 
acquires  a  velocity  v. 

Let  a  be  the  acceleration  of  the  body. 

Then  v"^  =  2as, 

and  f=ma. 

Now  fs  is  the  work  done  on  the  body  in  setting  it  in  motion, 

being  the  product  of  the  force  and  the  distance  through  which 
it  acts. 

Hence  the  work  done  on  the  body  of  mass  m  to  give  it  a 
velocity  v  is  equal  to 

Again,  suppose  the  body,  moving  at  first  with  velocity  v, 
to  be  brought  to  rest  by  the  action  of  a  force  f,  opposite  to  the 
direction  in  which  it  is  moving,  in  a  distance  s.  The  body  thus 

exerts  a  force  f  i7i  the  direction  in  which  it  is  moving,  and  does 
an  amount  of  work  in  coming  to  rest  equal  to  fs. 

But  if  a  is  the  acceleration  of  the  body,  measured  in  the 

direction  opposite  to  the  motion,  so  that,  since  the  velocity  is 
diminishing,  a  is  a  positive  quantity  ; v'^  =  2as, 

and  

f=ma. 

:.   fs=^mv\ 
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The  work  done  or  given  out  by  the  body  in  coming  to  rest  is, 

theiefore,  equal  to  ^mv'^. 
Thus,  the  quantity  ̂ mv'^  is  the  measure  of  the  work  that  must 

be  done  on  the  body  to  give  it  the  given  velocity,  or  of  the  work 
that  can  be  got  out  of  the  body  as  it  loses  the  given  velocity 

and  comes  to  rest,  ̂ my^  is,  therefore,  the  work  which  is  stored 
up  in  the  body  of  mass  m  when  it  has  velocity  v. 
Now  the  work  stored  up  in  a  body  is  also  called  the  energy  of 

the  body.     The  energy  of  the  body  in  this  case  is  thus  hnv^- 
This  energy  is  possessed  by  the  body  because  of  its  state  of 

motion,  or  in  virtue  of  its  motion.  Hence  it  is  called  kinetic 

energy. 
The  phrase  kinetic  energy  is  often  written  shortly  K.E. 
Thus  we  have  the  formula 

K.E.  of  body^^^y^. 
This  expression  for  the  K.E.  gives  it,  of  course,  in  terms  of 

the  same  unit  as  that  in  terms  of  which  fs  measures  the  work, 
that  is,  in  absolute  units. 

Absolute  Units  of  Work. — It  is  convenient  to  have  names 

for  the  absolute  units  of  work  in  the  two  standard  systems,  the 
F.P.S.  and  the  C.G.S.  systems. 

The  absolute  unit  of  work  in  the  foot-pound-second  system  is 
the  work  done  by  a  force  of  a  poundal  acting  through  a  foot ;  it 

is  called  the  foot-poundal. 

The  absolute  unit  of  work  in  the  centimetre-gram-second 
system  is  the  work  done  by  a  force  of  a  dyne  acting  through 
a  centimetre  ;  it  is  called  the  er(/. 

Thus,  if  the  quantities  are  all  measured  in  F.P.S.  units  hnv"^ 
is  the  K.E.  in  foot-poundals  ;  if  the  quantities  are  in  C.G.S. 

units  ̂ mv^  is  the  K.E.  in  ergs. 
Kinetic  energy  being  by  definition  work,  can,  of  course,  be 

measured  in  terms  of  any  unit  which  is  a  unit  of  work. 

Thus,  suppose  we  require  the  number  of  foot-pounds  of 
energy  in  a  body  of  mass  m  lbs.  moving  with  a  velocity  of  v  feet 
per  second. 

K.E.  of  hodj  =  ̂mv'^  foot-poundals. 
But  one  foot-poundal  =  o^^  of  one  foot-pound. 

.".    K.E.  of  body  =  -^  foot-pounds. 
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In  the  same  manner,  if  a  body  has  mass  m  grams,  and  moves 
with  a  velocity  of  v  cms.  per  sec,  its  K.E.  is 

all  of  ̂ mv'^  gram-centimetres. 
In  general,  if  in  any  case  g  is  the  acceleration  due  to  gravity, 

the  expression  for  the  K.E.  of  a  moving  body  in  gravitation 
units  is 

~w 

Example. — What  is  the  kinetic  energy  in  ergs  of  a  mass 
of  50  grams  moving  at  8  metres  per  second  ? 

Mass       =  50  grams. 

Velocity  =  800  cms.  per  sec. 

.-.    K.E.=|.50.(800)^ergs 
=  16000000  ergs. 

Example. — Find,  in  foot-tons,  the  kinetic  energy  of  a  train 
of  90  tons,  moving  at  20  miles  per  hour. 

Mass       =90x2240  lbs. 

Velocity  =  f  I  x  20  feet' per  sec. 
=^  feet  per  sec. 

.*.   K.E.  =i  .  90 .  2240  .  {^i-f  foot-poundals 

=  ̂  .  90  .  2240  .  (%«-)2  foot-pounds 

=bV.  90.(^)2  foot-tons 
=  1210  foot-tons. 

[It  is  clear  from  this  example  that  the  K.E.  of  m  tons  moving 
at  V  feet  per  second  is 

  foot-tons.1 

Example. — A  bullet  of  ̂   oz.  mass,  moving  with  a  velocity 
of  800  feet  per  second,  strikes  a  piece  of  wood  and 

penetrates  1|^  inches.  What  is  the  resistance  to  pene- 
tration ? 

Let  f  poundals  be  the  required  force. 

K.E.  of  bullet  =  i  .  jV  .  (800)2  foot-poundals. 
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Work  done  by  bullet  against  resistance  in  coming  to  rest 

=f .  ̂  foot-poundals. 

.-.   f.  1=^.^.(800)2. 

f=«=80000. 
o 

The  requiied  resistance  is 

80000  poundals  or  2500  pounds'  weight. 
[This  question,  and  many  others  of  the  same  kind,  can  be  done 

without  the  aid  of  the  formula  for  kinetic  energy.  This  could 

be  done  by  means  of  the  formulae  v'^=-i]fi-{-^as  and  f=ma  ;  and 
similar  questions  have  already  been  done  in  this  way.  But  the 
formula  for  kinetic  energy  enables  us  to  do  such  questions 
more  quickly.] 

Example. — A  train    of  mass    150  tons,   moving   with   a 
velocity   of  30    miles  an    hour   is   brought   to   rest   in 

100  yards.  What    is  the   force   of  resistance  in  tons' 
weight  ? 

Let  the  foi'ce  be  P  tons'  weight. 
Mass       -150.  2240  lbs. 

Velocity  =  44  feet  per  second 

.-.    K.E.  =1 .  150  .  2240  .  (44)2  foot-poundals. 

Energy  expended  =  P  .  2240  .  32  .  300  foot-poundals. 

.-.    P  .  2240  .  32  .  300  =  1 .  150  .  2240  .  (44)'-^. 

^^-4732-   8   -^^«' 

Force  is  15|  tons'  weight. 

Example. — A  body  of  mass  m  kilograms  moves  with  a 
velocity  of  v  metres  per  second.  Find  its  kinetic  energy 

in  kilogiam-metres. 

Mass       =  1000m  grams. 

Velocity  =  lOOy  cms.  per  sec. 

. • .    K.E.  =  i  .  1000m .  (lOOvf  ergs 

=  — .  10007?« .  (100y)2  gram-centimetres. 

^9 
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But  1  kilogram-metre  =  1000  .  100  gram-centimetres, 

.-.    K.E.  of  body 

= J_  .  lOOOm  .  (100^)2^(1000 .  100)  kilogram-metres 

=  12^^  kilogram-metres. 

It  might  appear  at  first  that,  since  K.E.  of  m  grams  moving 

at  V  cms.  per  sec.  is  mv^/2g  gram-cms.,  K.E.  of  m  kilos,  moving 
at  V  metres  per  sec.  should  be  mv^/2g  kilogram-metres.  But 
notice  that  mass  is  increased  1000-fold,  and  v^  is  increased 
10,000-fold.  Thus  K.E.  is  increased  10,000,000-fold,  and  the 
unit  is  only  increased  100,000-fold.  Therefore,  the  measure  of 
the  K.E.  is  100  times  as  great  as  in  the  first  case. 

If  in  the  second  case  we  took  g  to  denote  the  acceleration  due 

to  gravity  in  metres  per  second  per  second,  so  that  it  would  be 

about  9'81,  the7i  the  measure  of  the  K.E.  in  kilogram-metres 
would  be 

1        2 

Exercises  XVII.  a. 

1.  Find  in  foot-poundals  and  in  foot-pounds  the  kinetic  energies  of 
(1)  56  pounds  moving  10  feet  per  second. 
(2)  4  ounce  moving  2000  feet  per  second. 
(3)  A  ton  moving  2  feet  per  second. 

2.  Find  in  ergs  and  in  gram-centimetres  the  kinetic  energies  of 

(1)  50  grams  moving  at  '4  metre  per  second. 
(2)  250  kilograms  moving  at  40  metres  per  second. 

3.  Find  in  kilogram-metres  the  energy  of  a  mass  of  1500  kilos, 
moving  at  24  metres  per  second. 

4.  Compare  the  kinetic  energies  of  50  pounds  moving  at  30  miles  an 
hour  and  5  kilos,  moving  at  6  metres  per  second. 

5.  If  two  bodies  are  moving  with  equal  momenta,  show  that  their 
kinetic  energies  are  ( 1 )  proportional  to  their  velocities,  (2)  inversely 
proportional  to  their  masses. 

6.  If  a  bullet  discharged  with  a  certain  velocity  will  penetrate  3 
inches  into  a  piece  of  wood,  find  how  far  it  would  penetrate  if 
discharged  with  half  the  velocity. 
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7.  A  bullet  discharged  with  a  certain  velocity  penetrates  3  inches 
into  a  piece  of  wood.  How  far  will  a  bullet  of  half  the  mass 
penetrate  if  it  is  discharged  with  the  same  velocity  and  if  the 
resistance  to  penetration  is  the  same  as  in  the  case  of  the  other 
bullet? 

8.  How  many  foot-tons  of  work  are  done  by  an  engine  in  getting 
up  a  velocity  of  20  miles  an  hour  in  a  train  of  90  tons,  frictional 
resistance  to  motion  being  neglected  ? 

Increase  of  Kinetic  Energy  is  equal  to  Work  done  by  a 
Force. — Consider  now  the  more  general  case  of  a  body  of  mass 
m,  moving  in  a  straight  line  and  having  its  velocity  increased 
from  u  to  V  by  the  action  of  a  force  /  upon  it,  as  it  moves  through 
a  distance  s  in  the  sense  of  the  force. 

Let  a  be  the  acceleration  measured  in  the  sense  of  f,  so  that  a 

is  positive. 

Then  v^-u^  =  ̂ as; 

and  f—ma. 

hmv^  and  ̂ mu^  are  the  original  and  final  kinetic  energies 
of  the  body,  and  fs  is  the  work  done  on  it.  Hence  the  increase 

in  the  kinetic  energy  of  the  body  is  equal  to  the  work  done  on 
it  by  the  force. 

This  is,  of  course,  what  we  might  naturally  have  ex- 
pected from  what  we  know  abo\it  kinetic  energy  ;  but  it  is 

better  to  deduce  this  important  result  from  the  fundamental 
formulae. 

It  may  be  inferred  from  the  above  result  that,  when  s  is 

negative,  or  the  body  moves  in  the  direction  opposite  to  the 
force,  thus  meeting  with  a  resistance  to  its  motion  and  having 
negative  work  done  on  it,  the  diminution  of  its  kinetic  energy  is 
equal  to  the  numerical  value  of  this  work. 

It  will  be  better,  however,  to  give  a  formal  proof  of  this 
important  proposition. 

Suppose  a  body  of  mass  m  to  be  moving  in  a  straight  line  and 
to  have  its  velocity  reduced  from  u  to  v  by  the  action  of  a  force 
f  against  its  motion  while  it  moves  through  a  distance  s. 

Let  a  be  the  acceleration  measured  in  the  direction  of  f,  so 

that  a  is  positive. 
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Then,  since  the  distance  travelled  in  the  direction  in  which  a 

is  measured  is  —  s, 
'^2  _  li'^  ̂   —  2as, 

or  u^  —  v^  —  2as  ; 
and  t=ma. 

Thus,  the  loss  of  kinetic  energy  is  equal  to  the  work  done  by 
the  body  against  the  force. 

It  is  very  easy  to  remember  these  two  results,  and  they  are 
what  we  should  naturally  expect,  knowing  that  kinetic  energy 

means  work  stored  up  in  a  body.  They  are  here  rigidly  proved, 
however,  by  means  of  the  fundamental  formulae. 
We  may  state  the  results  in  these  woids  : 

The  increase  in  the  kinetic  energy  of  a  hody  is  equal  to  the  work 

done  on  it  hy  a  force  which  tends  to  increase  its  velocity. 

The  decrease  in  the  kinetic  energy  of  a  hody  is  equal  to  the  work 
which  it  does  against  a  force  which  teiids  to  diminish  its  velocity. 

It  must,  of  course,  be  borne  in  mind  that  the  work  is  to  be 

measured  in  absolute  units,  as  is  obvious,  since  the  formula 

f=ma,  which  is  used,  refers  to  absolute  units.  Thus,  if  we  are 

using  the  F.P.S.  system,  the  work  is  in  foot-poundals  ;  if  the 
C.G.S.  system,  the  work  is  in  ergs. 

Example. — Through  what  distance  must  a  force  of  4  dynes 
act  on  a  kilogram  to  change  its  velocity  from  5  to  10 
metres  per  second  ? 

Let  the  distance  be  s  cms. 

Increase  in  K.E.  of  body  =  i.  1000{(1000)2- (500)2}  ergs. 

Woik  done  on  body         =4.6-  ergs. 

.-.    4s  =  1.1000 {(1000)2 -(500)2}, 

.  =  i500^0^A00^93750O0O. o 

Required  distance  is  937500  metres. 

Example. — A  bullet  of  mass  f  oz.  in  passing  through  a  2 

inch  boai'd  has  its  velocity  brought  down  from  1600  to 
1100  feet  per  second.  What  is  the  resistance  offered  by 
the  board  ? 
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Let  f  poundals  be  the  i-esistance. 

Loss  of  K.E.  =  i  .  J^  •  f{ (1600)- -(1100)2}  foot-poundals. 
Energy  expended  against  resistance  =/.  J  foot-poundals. 

•••   f.^  =  *.TV.f{(1600)2-(1100)n. 

^_6  .  3  .  2700  .  500^759375 

8.16  ~      4      ' 
Resistance  is  5933  lbs.'  wt.,  about. 

Example. — A  body  of  mass  2  lbs.  is  moving  in  a  horizontal 
straight  line  running  west  and  east  under  the  action  of  a 
constant  force  of  2  poundals  to  the  west.  At  a  certain 

instant  it  is  moving  with  a  velocity  of  4  feet  per  second 
eastwards.  What  will  its  velocity  be  when  it  is  4  feet  to 

the  east  of  this  point  '!- 

Let  V  feet  per  second  eastwards  be  the  lequired  velocity. 

Loss  of  energy  of  body  =  ̂   .  2(4'^  -  v^)  foot-poundals. 

Energy  expended  against  I'esistance  =  2  .  4  foot-poundals. 
.-.    ̂ .2(42-'y2)  =  2.4, 

16-^2  =  8, 
v=±2v^. 

The  velocity  is  2  \^2  feet  per  second  to  the  east,  or  2  \^2 
feet  per  second  to  the  west. 

Either  of  these  solutions  is  correct,  and  both  should  be  given. 

The  kinetic  energy  of  the  body  at  the  given  point  is  known 

because  we  know  how  much  energy  is  spent  against  the  resist- 
ance, and  kinetic  energy  depends  upon  magnitude  of  velocity, 

but  not  upon  its  direction. 

The  explanation  is  that  the  body  travels  through  the  point 
in  question  towards  the  east  till  it  comes  to  rest  for  an  instant, 
and  then,  under  the  action  of  the  force,  which  now  does 

positive  woi'k  on  it,  travels  to  the  west  and  passes  through 
the  point  again  with  the  same  velocity  as  it  had  in  passing 

through  it  the  first  time.  The  nett  amount  of  energy  that  has 

been  spent  against  the  resistance  when  the  body  is  passing 
through  the  given  point  is  the  same  in  each  case.  In  the 

second  place  more  energy  has  been  spent  up  to  the  instant 
that  the  body  comes  to  rest  or  reaches  its  furthest  position 
eastwards,  but  some  has  been  recovered  in  returning. 
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Exercises  XVII.  b.     . 

1.  What  resistance  must  act  on  a  7  pound  mass  moving  at  20 
feet  per  second  to  reduce  its  velocity  by  one  half  in  10  feet? 

2.  If  a  force  of  2  poundals  acts  on  a  mass  of  4  pounds,  moving  at 
first  with  a  velocity  of  3  feet  per  second,  through  a  distance  of  7 
feet,  what  is  then  the  velocity  of  the  mass  ? 

3.  Through  what  distance  must  a  kilogram  with  a  velocity  of  100 
cms.  per  second  move  against  a  resistance  of  1  dyne  to  have  its 
velocity  reduced  by  I  cm.  per  second  ? 

4.  Through  what  distance  must  a  kilogram  with  a  velocity  of  50 
cms.  per  second  move  against  a  resistance  of  1  dyne  to  have  its 
velocity  reduced  by  1  cm.  per  second  ? 

Formula  applicable  to  both  cases. — The  two  cases,  in  which 
the  kinetic  energy  of  a  body  is  increased  by  having  work  done 
on  it  and  diminished  through  its  doing  work  against  a  resistance, 
may  be  represented  by  means  of  a  single  formula  ;  and  some 
students  will  find  it  more  convenient  to  use  one  formula  for  the 

two  cases,  although  they  may  be  treated  separately  as  already 
shown.  The  formula  is  that  first  given, 

f  s  =  ̂ m  (v^  —  u^). 
This  may  be  used  to  refer  either  to  the  case  in  which  the 

kinetic  energy  of  a  body  is  increased  by  a  force  acting  in  the 
sense  of  the  motion  or  to  the  case  in  which  the  kinetic  energy  is 

diminished  by  a  force  acting  against  the  motion,  by  paying  due 
regard  to  the  signs  of  the  quantities. 

Always  count  f  positive  and  measure  s  in  the  sense  in  which  f 
acts. 

Then  if  the  motion  is  in  the  sense  of  f,  s  is  positive  and  fs 
represents  positive  work  done  on  the  body. 

If  the  motion  is  opposite  to  f,  s  is  negative,  and  fs  represents 

a  negative  quantity  of  work  done  on  the  body,  or  of  energy  given 
to  the  body,  and  is  numerically  equivalent  to  the  work  done  by 

the  body  against  the  resistance. 

In  the  first  case  ̂ m{v^  —  u^)  is  the  increase  of  energy  and  is 
equal  to  the  work  fs. 

In  the  second  case  im{v^  —  u^)  is  a  negative  quantity  and  is 
numerically  equivalent  to  the  loss  of  kinetic  energy. 

Thus,  in  each  case  the  equation  holds,  both  sides  being  positive 
in  the  first,  and  both  negative  in  the  second  case. 
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Cases  may  occur  in  which  a  body  under  the  action  ot  a  con- 
stant force  in  the  straight  line  of  its  motion  moves  at  first  in  the 

sense  opposite  to  the  force  and  afterwards  in  the  same  sense; 

for  the  force  may  at  first  destroy  the  body's  velocity  and  then 
generate  an  opposite  velocity. 
A  simple  and  familiar  example  is  when  a  body  is  thrown 

vertically  upwards.  It  is  acted  upon  by  a  constant  downward 

force,  its  weight,  which  first  brings  it  to  rest  and  then  gives  it  a 
downward  velocity. 

At  first  work  is  done  against  the  force,  and  afterwards,  as  the 

body  returns,  work  is  done  by  the  force.  The  nett  amount  of 

work  that  has  been  done  against  the  force  in  any  position  of  the 
body  depends  only  on  the  position  and  not  on  the  sense  in  which 

the  body  is  moving.  Thus,  the  loss  in  kinetic  energy  depends 
only  on  the  position. 

Because  of  the  importance  of  the  subject  the  various  cases 

have  been  dealt  with  in  detail.  But  the  following  compact 
])roof  may  be  given  to  cover  every  case. 

Equation  of  Energy. — Suppose  a  body  of  mass  m  to  be 
moving  in  a  straight  line  under  the  action  of  a  constant  force  f 
in  the  same  line. 

Let  u  be  the  initial  velocity  of  the  body  and  v  the  final  velocity 
when  it  has  described  a  distance  s  from  its  original  position,  all 
these  quantities  being  measured  in  the  sense  in  which  f  acts,  so 
that  any  of  them  may  be  positive  or  negative. 

Let  a  be  the  acceleration  of  the  body  measured  in  the  sense  of 
f,  so  that  a  is  positive. 

Then  f=ma, 

and  v^=t(,^-\-2as. 

Fi'om  these  we  get       fs  =  ̂  wi  (v^  —  u^). 

This  equation,  coming  from  the  above  two  which  are  always 
true,  is  itself  always  true. 

If  s  is  positive,  work  is  on  the  whole  done  by  f,  and  fs  is 
positive,  and  the  K.E.  is  increased. 

If  s  is  negative,  work  is  on  the  whole  done  against  f,  and  fs 
is  negative,  and  the  K.E.  is  diminished. 

The  equation  fs  =  hn  (ir  —  n^) 
may  be  called  the  equation  of  energy. 
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It  states  that : 

The  amount  of  work  done  on  the  body  is  equal  to  the  increase 

of  kinetic  energy  {due  regard  heiifig  paid  to  the  signs  of  both 
these  quantities). 
Even  if  the  equation  is  not  used  in  this  form  in  cases  of  loss 

of  energy,  it  is  convenient  to  have  one  standard  form  to  refer 
to  as  the  equation  of  energy. 

We  shall  now  exemplify  the  two  ways  of  treating  a  question 

on  loss  of  kinetic  energy  in  the  following  problem. 

Example. — Find,  by  the  principles  of  kinetic  energy  the 
velocity  of  a  body  which  is  thrown  upwards  with  a 
velocity  of  45  feet  per  second  when  it  has  reached  a 

height  of  10  feet  above  its  starting  point. 

Let  mass  of  body  =  m  lbs. 
Downward  force  of  32  m  poundals  acts  on  body. 
Let  V  feet  per  second  be  required  velocity. 

First  Method. 

Loss  of  kinetic  energy  =  1^(45^  —  1?-)  foot-poundals. 
Work  done  against  weight  =  327)2  .  10  foot-poundals. 

.-.    im(45^-v")  =  32m.  10. 
^2^45' -640  =  1385. 

'y=db37-2. 

Second  Method. 

Increase  of  kinetic  energy =|w(y^  -  45^  foot-poundals. 

Work  done  on  body  by  weight  =  -32m  .  10  foot-poundals. 

.• .    1 7n  (^2  -  45^)  =  -  32m  .  10. 
^2= 45^ -640= 1385. 

v=±37-2. 

The  velocity  of  the  body  is  37*2  feet  per  second.  The  two 
signs  indicate  that  the  body  may  be  going  up  or  coming  down. 
The  increase  of  kinetic  energy  mentioned  in  the  second 

method  is,  of  course,  a  negative  quantity,  as  is  obvious  to 

begin  with. 
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Example.— A  bullet  weighing  half  an  ounce  is  projected 
vertically  upwards  with  a  velocity  of  1600  feet  per  second 

and  rises  3000  feet.  What  work,  in  foot-pounds,  is  done 
against  the  resistance  of  the  air  in  the  ascent  ? 

Initial  kinetic  energy  of  bullet 

=  1  .  -3^^  (1 600)2  f oot-poundals 

=  i2'i-  i2  '  (ISOO)"'^  foot-pounds 
=  i(50)2  foot-pounds 

=  1250  foot-pounds. 

This  is  expended  against  gravity  and  air  resistance. 

Work  done  against  gravity  =  ̂.y  .  3000  foot-pounds 

=  93f  foot-pounds. 

.*.  work  done  against  resistance  of  air  =  1156^  foot-pounds. 

This  is  an  example  of  the  action  of  more  than  one  force  on 

a  body  causing  a  change  in  its  kinetic  energy. 
Any  questions  of  this  sort  are  readily  solved  by  noticing  that 

work  done  by  a  force  helping  its  motion  is  a  contribution  to  its 

kinetic  energy,  and  woi'k  done  by  the  body  against  a  resistance 
is  taken  from  its  kinetic  energy. 

Exercises  XVII.  c. 

1.  Find  the  resistance  to  motion  per  ton  of  a  train  which  brings  it 
to  rest  in  220  yards  when  it  is  moving  at  60  miles  an  hour. 

2.  If  a  train  has  its  velocity  reduced  from  60  to  20  miles  per 
hour  by  the  action  of  a  constant  resistance  in  200  yards,  in  what 
further  distance  will  it  be  brought  to  rest  ? 

3.  A  falling  stone  passes  a  point  with  a  velocity  of  .30  feet  per 
second.  With  what  velocity  did  it  pass  a  point  20  feet  higher  up  ? 
Interpret  the  double  sign. 

4.  A  body  is  thrown  vertically  upwards  with  a  velocity  of  40 
metres  per  second.  Find  by  the  principle  of  energy  how  high  it 
will  rise,  neglecting  the  resistance  of  the  air. 

5.  A  bod}'  of  mass  70  grams  in  falling  through  10  metres  acquires 
a  velocity  of  ]3'5  metres  per  second.  Find  the  number  of  kilogram- 
metres  of  work  done  against  the  resistance  of  the  air. 
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Summary. 

The  work  that  must  have  been  done  on  a  body  of  mass  m  to  give 
it  velocity  v,  or  the  work  which  a  body  of  mass  m  having  velocity 
V  will  do  against  opposing  resistance  in  coming  to  rest,  is  called  the 
kinetic  energy  of  the  body. 

K.E.  of  body  is 

-mv^  in  absolute  units  ; 

—-mv^  in  gravitation  units. 

The  absolute  unit  of  work  or  energy  in  the  F.P.S.  system  is  called 
the  foot-poundal. 

The  absolute  unit  of  work  or  energy  in  the  C.G.S.  system  is  called 
the  erg. 

If  a  body  is  moving  in  a  straight  line,  and  is  acted  on  by  a  force 
in  that  line,  then  the  entire  amount  of  work  (algebraical)  done  on 
the  body  by  the  force  is  equal  to  the  increase  (algebraical)  of  the 

body's  kinetic  energy.  This  is  true  whether  the  work  done  on  the 
body  is  positive  or  negative. 

J 



CHAPTER  XVIII. 

POTENTIAL  ENERGY.      CONSERVATION  OF  ENERGY. 

PERPETUAL  MOTION.      ENERGY  AFTER  COLLISION. 

The  Dynamical  Ec[uations. — We  have  found  three  equations 
to  use  in  solving  questions  relating  to  the  motion  of  bodies 
in  straight  lines  under  the  action  of  force. 

We  will  now  collect  these  together. 

(1)  i=ma  :  the  force  equation. 

(2)  ft=m{v-u) :  the  momentum  equation. 

(3)  fs=^m(v-^-u^) :  the  energy  equation. 
Of  these  the  first  is  the  fundamental  equation.  It  has  been 

deduced  from  Newton's  Second  Law  of  Motion  and  the  definition 
of  the  absolute  unit  of  force.  The  other  two  are  deduced 

from  this  and  the  kinematical  equations.  As  we  have  seen, 

questions  involving  the  use  of  (2)  and  (3)  can  also  be  solved  by 
means  of  (1)  and  the  kinematical  equations.  But  (2)  and 
(3)  often  afford  very  convenient  and  ready  solutions  in  such 
cases. 

Potential  Energy. — Imagine  a  body  which  has  been  raised 
to  a  height  and  then  let  fall.  On  reaching  the  ground  it 

possesses  kinetic  energy,  which  it  had  not  at  first.  But 

before  beginning  to  fall  it  possessed  the  equivalent  of  this 
energy  in  virtue  of  its  position,  for  it  is  because  of  its  original 
position  that  it  is  able  to  acquire  its  kinetic  energy.  The  body 

when  laised  up,  and  before  beginning  to  fall,  is  said  to  possess 
potential  energy.  The  measure  of  the  potential  energy  given  to 
a  body,  by  raising  it  through  a  certain  height,  is  the  same  as  that 
of  the  kinetic  energy  which  it  will  acquire  in  falling  through 
the  same  height,  no  resistances  being  supposed  to  act  on  it. 
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The  potential  energy  of  a  body  is  the  energy  which  it  possesses  in 
virtue  of  its  position. 

The  kinetic  energy  of  a  body  is  the  energy  which  it  possesses  in 
virtue  of  its  motion. 

Suppose  a  mass  m  pounds  is  raised  up  to  a  height  h  feet. 
The  kinetic  energy  that  it  would  acquire  in  falling  is  equal  to 

the  work  that  would  be  done  in  the  fall  by  its  weight,  and  this 
is  equal  to  the  work  done  against  its  weight  in  raising  it.  Or, 
we  may  say  that  the  potential  energy  given  to  it  is  equal  to  the 

work  done  on  it  in  raising  it  against  the  action  of  its  weight. 
Therefore, 

POTENTIAL  ENERGY  =  |        ̂̂ ^  f
 OOt-pOUnds  ; l^or,  ifngh  loot-poundals. 

In  general,  if  a  mass  m  is  raised  to  a  height  A, 

POTENTIAL  ENERGY  =1^^^'  gravitation
  uuits  ; (or,  mgh  absolute  units. 

Examples  of  Potential  Energy.— Many  other  examples  of 
potential  energy  may  be  given  besides  those  which  occur  in 
Mechanics.  The  following  are  cases  of  bodies  possessing 

potential  energy  :  a  bent  spring  ;  the  wound-up  spring  of  a 
watch,  which,  by  uncoiling,  is  capable  of  keeping  the  watch  in 
motion  for  some  time  ;  compressed  air,  which  by  expanding  can 

do  work  ;  gunpowder,  which  by  exploding  can  set  a  bullet  in 
motion.  Combustible  bodies  possess  potential  energy  of  a  sort, 
namely,  chemical  energy  ;  for  instance,  the  carbon  of  coal  and 
the  oxygen  of  the  air,  with  which  the  carbon  combines  in 

burning,  possess  this  potential  energy  between  them,  and  in 

burning  it  is  developed.  It  may  be  changed  in  part  into 

useful  mechanical  work  by  means  of  a  steam  engine.  Or,  if 
the  combustion  merely  generates  heat,  this  is  a  form  of  kinetic 

energy,  for  there  is  little  doubt  that  heat  consists  of  a  violent 
state  of  agitation  of  the  molecules  of  the  bodies  in  which  it 
resides. 

Conservation  of  Energy. — When  a  body  falls  it  loses 
potential  energy,  but  the  amount  of  potential  energy  lost  at  each 
instant,  supposing  that  no  resistance  acts  on  it,  is  exactly  equal 
to  the  amount  of  kinetic  energy  acquired.  Or,  the  entire  amount 

pf  mechanical  energy  remains  constant, 

I 
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When  the  body  strikes  the  ground  and  conies  to  rest  it  loses 

all  its  energy  of  both  sorts.  But  the  energy  has  not  been  de- 
stroyed. The  impact  develops  heat,  and  heat,  as  we  have  seen,  is 

a  form  of  energy.  Also  in  falling  through  the  air,  in  consequence 
of  the  resistance  of  the  air,  the  body  is  constantly  losing 

mechanical  energy  (meaning  by  this  the  sum  of  its  potential 

and  kinetic  energies);  but  at  the  same  time  heat  is  being  de- 
veloped by  the  friction  of  the  body  against  the  air. 

The  heat  developed  at  first  resides  partly  in  the  body  and 

partly  in  the  air  or  the  ground ;  and  is  ultimately  dissipated 
into  surrounding  space.  And  this  heat  is  a  quantity  of  energy 
exactly  equal  to  the  mechanical  energy  lost  by  the  body.  This 

energy  has  been  lost,  perhaps,  as  far  as  getting  useful  work  from 
it  is  concerned ;  but  it  has  not  been  destroyed ;  it  still  exists 
in  the  universe.  It  may  be  lost  commercially,  but  it  cannot  be 

lost  physically.  Neither  can  the  energy  given  to  the  body  be 

made ;  it  must  be  drawn  from  some  source  of  energy  already 

existing.  When  the  body  is  i-aised  up  energy  is  given  to  it  which 
it  had  not  before,  but  this  energy  must  have  previously  existed 

somewhere,  although  it  may  not  be  missed  from  anywhere. 

If  a  person  raises  a  ball  by  a  muscular  effort  he  uses  up  some 
of  the  chemical  energy  of  his  body  which  has  been  derived  from 

his  food.  If  a  body  is  raised  by  means  of  a  steam-engine  the 
energy  used  is  derived  from  the  chemical  energy  of  the  coal. 

There  are  in  nature  many  forms  of  energy  of  which  we  have 

here  mentioned  what  may  be  considered  the  principal  ones, 
mechanical  energy,  heat,  chemical  energy.  Other  forms  are 

electrical  energy,  magnetic  energy,  molecular  energy  (as  in  the 
case  of  a  bent  spring). 

A  given  quantity  of  energy  can  be  transformed  from  one  of 
these  forms  into  another,  just  as  we  have  seen  that  energy  of 

motion  can  produce  heat,  and  heat  can  produce  energy  of  motion, 

as  in  the  case  of  a  locomotive ;  but  the  energy  can  never  be  in- 
creased or  diminished  in  amount.  Some  forms  are  more  useful 

than  others  from  a  practical  point  of  view ;  but  from  a  physical 

point  of  view  they  must  all  be  considered  as  energy.  Every 

agent  which  does  work,  such  as  a  living  being  or  a  steam-engine, 
is  simply  acting  as  a  transformer  of  energy  and  changing  it 
from  one  form  to  another. 
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Experience  shows  that  however  energy  may  be  changed  from 
one  form  to  another  it  can  neither  be  created  nor  destroyed,  and  a 

given  quantity  of  it  cannot  be  increased  or  diminished  in  amount. 

The  amount  of  energy  in  any  region  may  be  changed,  for 
energy  can  pass  out  of  and  into  it.  The  energy  of  the  earth 

changes  in  amount,  for  heat  is  radiated  to  and  away  from  the 
earth. 

The  proposition  here  enunciated  is  sometimes  expressed  in  the 
following  way. 

This  is  known  as  The  Doctrine  of  the  Conservation  of 
Energy  : 

The  amount  of  energy  in  the  universe  is  unalterable. 
An  application  has  been  made  of  this  principle  in  considering 

the  action  of  machines.  The  work  applied  to  a  machine,  or  the 

energy  expended  on  it,  is  equal  to  the  work  that  is  got  from  it 
together  with  the  energy  spent  in  overcoming  friction,  which 
last  is  transformed  into  heat.  In  the  case  of  a  theoretically 

perfect  machine  there  is  no  friction,  and  the  work  done  on  the 

machine  is  equal  to  the  work  got  from  it. 

Perpetual  Motion. — Many  attempts  have  been  made  from 
time  to  time  to  invent  a  machine  which  will  keep  itself  in 
motion,  and  not  only  that,  but  set  other  things  in  motion,  and 

so  do  useful  work  without  the  expenditure  of  any  energy  on  it. 

But  it  is  clear  from  the  principle  of  the  conservation  of  energy 

that  all  such  attempts  must  be  futile,  as  no  energy  can  be  got 

fi'om  an  agent  which  is  not  supplied  to  it  in  some  form.  In 
fact,  no  machine  could  be  made  which  would  even  keep  itself 
in  motion  without  doing  work  ;  for  there  must  always  be  some 

amount  of  friction  of  the  parts  which  would  bring  it  to  rest ;  so 
that  if  the  machine  were  set  going  its  kinetic  energy  would  be 
transformed  into  heat. 

Motion  on  Inclined  Plane. — Suppose  a  body  of  mass  m  to 
slide  down  a  length  I  of  an  inclined  plane  without  friction,  the 

corresponding  vertical  height  being  h.  Considei'  the  change  in 
the  kinetic  energy  of  the  body. 

The  resolved  part  of  the  body's  weight  down  the  plane  is 

the  work  done  by  the  force  in  the  distance  I  is  mgh  (in 

absolute  units). 
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/.    increase  in  kinetic  energy  ̂ mgh. 
We  may  notice  that  the  body  descends  by  a  vertical  height  hy 

or  falls  to  a  point  which  is  at  a  level  lower  than  its  first  position 
by  the  distance  h ;  and  the  increase  in  kinetic  energy  is  the  same 
as  if  the  body  had  fallen  through  this  distance  in  a  vertical 

straight  line. 

Thus,  if  a  body  descends  through  a  given  distance,  whether  it 
is  by  falling  freely  or  by  sliding  down  a  smooth  plane,  the 

increase  in  its  kinetic  energy  is  the  same  ;  and  so  we  must  con- 
sider that  the  decrease  in  the  potential  energy  is  the  same  in 

both  cases. 

In  a  similar  manner,  if  a  body  is  sliding  up  an  inclined  plane 

without  friction,  in  passing  up  through  a  veitical  height  h  it 
loses  a  quantity  of  kinetic  energy,  Tngh  absolute  units.  When 
all  its  kinetic  energy  is  lost  it  conies  to  rest  for  an  instant  and 
then  slides  down. 

Energy  of  Pendulum. — In  the  case  of  a  pendulum,  or  heavy 
body  suspended  by  a  string  and  oscillating  to  and  fro,  the  energy 

is  constantly  changing  from  potential  to  kinetic  and  back  again. 
Neglecting  the  resistances  which  ultimately  bring  the  body  to 
rest,  the  entire  energy  remains  unchanged  in  amount.  When 
the  body  is  at  the  extreme  end  of  its  swing,  and  is  therefore  in 

its  highest  position,  all  its  energy  of  the  pendulum  is  potential. 
As  it  falls  it  loses  potential  and  acquires  kinetic  energy.  In  its 

lowest  position,  when  the  string  is  vertical,  it  has  lost  all  its 

potential  energy  and  its  kinetic  energy  is  greatest,  so  that 
its  velocity  is  then  greatest.  As  it  rises  from  this  position  it 

loses  kinetic  and  regains  potential  energy  ;  and  so  on. 

Bodies  connected  by  String  over  Pulley.— Suppose  two 

bodies,  of  masses  m,  m',  to  be  connected  by  a  string  passing  over 

a  smooth  light  pulley.     Let  m  be  greater  than  m'. 
The  bodies  being  free  to  move  the  whole  of  the  work  done  by 

gravity  in  any  motion  is  spent  in  generating  kinetic  energy  in 
them. 

Suppose  that  m  descends  and  m'  ascends  a  distance  A. 
A  force  mg  acts  in  the  sense  of  the  motion,  and  a  force  mg 

opposite  to  the  motion. 

Therefore  the  work  done  is  mgk  -  m'gk. 
[The  work  done  is  the  same  as  if  the  bodies  were  moving  in 
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one  straight  line  with  a  force  mg  acting  to  help  the  motion  and 

a  force  m'g  in  the  opposite  sense.] 
Let  V  be  the  velocity  acquired  by  the  bodies  from  rest  in  this 

motion. 

Then  the  kinetic  energy  acquired  is  \{m+m')v^. 

.'.   ̂ (m  +  m')v^=(m-7n')gh. 
The  case  of  two  bodies,  one  of  which  moves  horizontally,  and 

is  connected  by  a  string  to  the  other,  which  moves  vertically 
downwards,  may  be  considered  in  a  similar  manner,  work  in  this 

case  being  done  by  the  weight  of  one  body  only,  the  falling  one. 

Exercises  XVIII.  a. 

1.  Bodies  slide  down  various  inclined  planes  of  the  same  height 
but  of  diflFerent  lengths.  Show  that  they  all  reach  the  feet  of  the 
planes  with  the  same  velocity. 

2.  A  body  hung  at  the  end  of  a  string  10  feet  long  is  drawn  aside  6 
feet,  measured  in  a  horizontal  direction,  from  the  original  vertical 
position  of  the  string,  and  is  then  let  go.  With  what  velocity  does 
it  pass  through  its  original  position  ? 

3.  A  body  of  mass  20  pounds  slides  100  feet  down  an  inclined 
plane,  of  slope  1  in  50,  and  acquires  a  velocity  of  6  feet  per  second. 
It  is  retarded  by  the  action  of  a  constant  frictional  resistance. 
What  work  is  done  against  this  resistance,  and  what  is  the  value  of 
the  resistance  ? 

4.  A  body  of  mass  10  pounds  slides  down  an  inclined  plane  100 
yards  long  with  a  slope  of  1  in  25.  The  frictional  resistance  of  the 
plane  is  30^  of  the  weight  of  the  body.  If  the  body  has  a  velocity 
of  26  feet  per  second  at  the  foot  of  the  plane,  what  is  the  work  done 
against  the  resistance  of  the  air  ? 

5.  An  engine  pulls  a  train  of  40  tons  up  an  incline  of  1  in  80 
through  400  feet,  while  the  velocity  of  the  train  falls  off  from  20  to 
15  miles  an  hour.  If  the  resistances  to  motion  be  10  lbs.'  wt. 
per  ton,  what  is  the  entire  amount  of  work  done  by  the  engine  ? 

6.  Two  bodies  of  masses  24  and  25  ozs.  are  connected  by  a  string 
which  passes  over  a  smooth  light  pulley.  If  they  are  left  free  to 
move,  find  their  velocity  when  each  has  moved  through  a  foot. 

7.  Two  bodies  of  masses  5  and  7  pounds  are  connected  by  a  string 
passing  over  a  pulley.  When  they  have  moved  through  6  feet  they 
have  a  velocity  of  6  feet  per  second.  How  much  work  in  foot- 

pounds has  been  expended  against  friction  and  in  setting  the  pulley 
in  motion  ? 

8.  Two  masses,  13  and  11  units,  are  connected  by  a  string  passing 
over  a  smooth  light  pulley  ;  when  each  has  moved  through  5  feet 
they  are  estimated  to  have  a  velocity  of  5  feet  per  second.  What 
value  for  the  acceleration  due  to  gravity  does  this  give  ? 
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9.  If  a  gram  weight  hanging  by  a  fine  thread  passing  over  a 
perfectly  smooth  light  pulley  at  the  edge  of  a  perfectly  smooth 
horizontal  table  draw  a  2  kilogram  weight  along  the  table,  what  is 
the  common  velocity  when  the  gram  weight  has  descended  1  metre  ? 

10.  A  body  of  mass  m  is  attached  to  the  end  of  a  string.  The 
string  passes  over  a  fixed  pulley  under  a  movable  pulley  and  has  its 
other  end  fixed.  All  the  straight  parts  of  the  string  are  vertical. 
A  mass  M  is  attached  to  the  moveable  pulley,  m  descends  and  draws 
up  M.     Show  that  when  m  has  descended  by  h  and  has  velocity  v, 

v2(4m  +  M)  =  4gh{2m  -  M). 

Energy  after  Collision. — If  two  bodies,  one  or  both  of  which 
are  in  motion,  collide,  some  of  their  energy  of  motion  is  always 
lost  in  the  impact.  Heat  is  developed  by  the  impact,  the  energy 
of  which  is  exactly  equal  to  that  which  is  lost  from  the  kinetic 

energy  of  the  bodies. 

Suppose,  for  example,  that  two  equal  bodies  are  moving 
towards  each  other  with  equal  velocities  in  the  same  straight 

line.  On  colliding  they  will  rebound  with  velocities  which  are 
equal  to  each  other,  but  less  than  those  which  the  bodies  had  at 
first,  no  matter  of  what  materials  the  bodies  aie  made.  Hence 

some  kinetic  energy  is  lost. 
If  the  two  bodies  are  of  such  mateiials  that  they  do  not 

rebound  at  all,  but  remain  at  rest  together  aftei"  the  collision, 
then  all  their  kinetic  energy  is  lost,  and  has  been  converted  into 
heat. 

Consider  the  change  in  kinetic  energy  when  one  body  im- 

pinges on  anothei',  and  the  two  move  on  together. 
Suppose  a  body  of  mass  m,  moving  with  velocity  y,  to  impinge 

on  a  body  of  mass  m\  which  is  at  rest,  so  that  the  two  go  on 

moving  together.  To  find  the  kinetic  energy  of  the  system  after 
the  impact. 

Let  V  be  the  joint  velocity  after  impact. 
By  conservation  of  momentum, 

(m  +  w')  v=mu. mu 

New  kinetic  energy  —\{m-\-7n!) 

(m+m'Y 

2  (m+m') 
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Also,  ratio  of  new  to  old  kinetic  energy 

2{m+m')  '    2 

m  +  m 

These  results  are  not  intended  to  be  remembered,  but  merely 
as  illustrations  of  the  subject. 

The  student  must  carefully  avoid  the  error  of  supposing  that 

after  collision  bodies  have  the  same  kinetic  energy  as  befoi'e. 
Kinetic  energy  is  always  diminished  by  the  collision.  The 

entire  energy  is  unchanged,  but  a  part  ceases  to  be  mechanical 

energy.  And,  of  course,  the  entire  momentum  estimated  in  any 
given  direction  remains  unchanged. 

When  one  body  strikes  another  and  the  two  move  on  together, 

overcoming  a  frictional  resistance,  as  when  a  hammei-  strikes  a 
nail  and  drives  it  into  a  piece  of  wood,  kinetic  energy  becomes 
converted  into  heat  in  two  distinct  ways. 

First,  some  kinetic  energy  is  transformed  into  heat  by  the 

impact ;  the  two  bodies  begin  to  move  on  together  with  momen- 
tum equal  to  the  momentum  which  the  moving  one  had  just 

before  the  impact,  but  with  a  smaller  kinetic  energy. 

Secondly,  the  kinetic  energy,  or  a  part  of  it,  which  the  two 
bodies  have  when  they  begin  to  move  together  is  tiansformed 

into  heat  in  overcoming  the  resistance. 

The  Pile-driver. — The  action  of  the  pile-driver  illustrates 
well  the  joint  energy  of  bodies  after  collision.  The  driver  is  a 

heavy  weight  which  falls  on  the  top  of  the  pile.  A  portion  of 
the  energy  of  the  driver  is  at  once  converted  into  heat  by  the 

collision,  and  the  driver  and  pile  begin  to  move  on  with  the 

remainder  of  the  energy,  which  is  used  up  in  overcoming  the 
resistance  of  the  earth  to  penetration. 

The  illustration  shows  the  form  of  pile-driver  called  the 
monkey-engine.  The  weight  Q  which  falls  on  the  pile  is 
called  the  monkey. 

Q  is  hauled  up  by  means  of  a  winch  with  two  handles  A^  A. 

"When  Q  is  at  the  top  the  toothed  wheels  are  thrown  out  of  gear 
with  each  other  by  means  of  the  lever  CDE^  so  that  Q  descends, 

uncoiling  the  rope  from  the  barrel  G  of  the  winch. 
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Another  plan  is  to  have  an  arrangement  at  the  top  of  Q  which 
causes  it  to  be  released  when  drawn  up  to  top.  This  has  the 

advantage  of  allowing  Q  to  acquire  a  greater  velocity  in  its  fall. 

Fig.  146.  -Pile  driver  (monkey  engine). 

Experiment  42. — Take  two  blocks  of  wood,  each  about  3  ins.  x3 
ins.  X  12  ins.  Suspend  each  by  two  strings,  one  near  each  end,  the 
strings  being  of  equal  length  and  about  4  feet  long,  so  that  when 
the  block  hangs  at  rest  it  is  horizontal  and  the  strings  are  vertical. 
Also  let  the  blocks  be  so  hung  that  when  they  are  at  rest  they  are  in 

line  with  each  other,  the  two  nearest  ends  being  about  -g  in.  apart. 
Now  each  block  can  be  made  to  swing  in  the  vertical  plane  of  its 
strings,  always  remaining  horizontal  as  it  swings. 
Now,  if  one  of  the  blocks  is  drawn  aside  so  that  it  rises  by  a 
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height  h  ft.  from  its  lowest  position,  and  then  released,  it  will 
reach  that  position  with  a  velocity  i^HSAh  feet  per  second.  And,  in 
the  same  way,  if  it  is  observed  to  swing  up  to  a  height  h,  it  must 
have  passed  through  its  position  of  rest  with  a  velocity  ̂ /64A  feet 
per  second. 

In  experiments  h  will  be  a  small  quantity,  and  the  best  way  to 
determine  it  accurately  in  any  case  is  to  observe  the  horizontal  dis- 

tance by  which  the  block  is  displaced  from  its  position  of  rest.  If 
this  is  k  and  the  length  of  each  string  is  /,  then  in  the  displaced 
position  the  lowest  ends  of  the  strings  are  at  a  vertical  depth  below 

the  highest  ends  equal  to  Jl?  -k"^ ;    .'.  h  =  l-  JP  -  k\ 
Thus,  if  the  strings  are  4  feet  long  and  the  block  is  drawn  aside  5 

inches,  it  is  easily  calculated  that  it  is  raised  by  '022  ft.,  and 
acquires  on  reaching  its  lowest  position  a  velocity  of  about  1  "2  feet 
per  second. 

To  measure  the  horizontal  displacements,  a  scale  may  be  placed 
horizontally  beside  the  blocks.  With  the  help  of  this  it  can  easily 
be  observed  how  far  the  block  is  drawn  aside  or  how  far  it  moves  in 
its  swing  before  beginning  to  return. 

In  order  to  make  the  blocks  move  together  after  collision,  a  couple 
of  small  spikes  may  be  placed  in  the  end  of  one,  with  the  sharp 
points  protruding  so  that  these  may  penetrate  the  other  block.  Or, 
one  of  the  blocks  may  be  provided  with  a  small  spring  catch  at  its 
top  front  edge,  which  will  slide  over  a  pin  near  the  edge  at  the  top 
of  the  other,  and  thus  fasten  the  blocks  together. 

The  masses  of  the  blocks  may  be  varied  by  placing  weights  upon 
them,  strips  being  nailed  along  the  upper  faces  of  the  blocks  to  pre- 

vent the  weights  from  moving  at  the  instant  of  the  collision. 
Care  must  be  taken  that  the  weights  do  not  overbalance.  This 

may  be  done  by  making  each  string  to  terminate  in  a  loop  which 
goes  round  the  block,  the  knot  of  the  string  being  a  few  inches 
above  the  block. 

Let  the  masses  of  the  blocks  be  m,  m! .  Let  m  be  drawn  aside  and 

strike  m'.  By  observing  the  distance  to  which  in  was  drawn  and  the 
distance  to  which  they  move  together  on  the  other  side,  we  can 

determine  the  velocities,  v,  v'  of  m  just  before  collision,  and  of  the 
two  together  just  after.  The  corresponding  momenta  are  mv  and 

{m  +  m')v',  which  should  be  equal. 

Experiment  43. — Arrange  the  blocks  without  the  spikes  or  catch 
so  that  they  separate  after  collision.  It  will  now  be  necessary  for 
two  observers  to  determine  the  distances  to  which  the  blocks  swing. 

For  large  values  of  m,  m  will  follow  m' ;  for  small  values  of  m,  m 
will  have  its  direction  of  motion  reversed  by  the  collision. 

Let  v',  v"  be  the  calculated  velocities  of  m  and  m'  after  collision. 
The  joint  momentum  of  m  and  in'  after  collision  is  mv'  +  m'v"  or 

7nv'  -  w't;",  according  as  m  follows  m'  or  rebounds. 
In  each  case  this  should  be  equal  to  mv. 
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Example. — A  hammer  weighing  2  lbs.,  moving  with  a 
velocity  of  6  feet  per  second,  strikes  a  I  oz.  nail  and 

drives  it  \  in.  into  a  piece  of  wood.  What  is  the  resist- 
ance, supposed  constant,  of  the  wood  to  penetration,  and 

how  long  does  the  penetration  last  ?  The  hammer  does 
not  rebound  from  the  head  of  the  nail. 

Let  the  velocity  with  v/hich  hammer  and  nail  begin  to  move 

after  impact  be  v  feet  per  second. 
Then,  by  conservation  of  momentum, 

2  +  4^6)  "  =  2.6, 128.6 

Let  the  required  resistance  be  F  poundals. 

Then,  since  kinetic  energy  =  work  done  against  resistance, 

2V       4.16/ V    129  /  4.1 

F  =  48. 

2V       4.  16/ \    129  /  4.  12 

129     /128.6\2     48.128.36 
128     \    129  /  129 

Required  force  = — '         ' '   lbs.'  wt. 
-53-58  lbs',  wt. 

Let  t  sees,  be  the  duration  of  the  penetration. 

Then,  since  momentum  2  .  6  units  is  desti'oyed  by  the  foi'ce 
F  poundals  in  t  seconds, 

F^  =  2.6, 
48.128.36,     ,>, 

—129—^=1^' 

129    ^ 

4  .  128  .  36 
43 

~6144' 

43 
Required  time  =  ̂ ttt  secs. 

Tlie  time  could  also  be  found  by  considering  that  it  is  the 

time  with  which  a  body  will  travel  —  ft.  with  mean  velocity  - 
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of         '      feet  per  second  ;  and  this  may  be  done  as  a  check  on 
the  result  already  obtained. 

The  time  thus  got  is 

J__l    .128.^        _       129 

48  •  2  ""*     129    ̂ ^^-  ~  24  .  128  .  6  ®®^®' 
This  agrees  with  the  result  already  got. 
Again,  this  could  have  been  got  first  in  this  way  and  the 

force  then  obtained  from  the  momentum  equation. 

In  this  question  no  account  is  taken  of  the  weight  of  the 
hammer  and  nail,  because  there  is  nothing  to  indicate  how  they 

would  act.  They  would  have  very  little  effect  in  any  case ;  and, 

if  the  hammer  were  driving  the  nail  horizontally,  they  would 
have  no  effect  at  all. 

Example. — A  pile-driver  of  mass  10  tons  falls  from  a  height 
of  9  feet  on  the  head  of  a  pile  of  mass  ̂   ton  and  drives  it 
6  inches  into  the  ground.  What  is  the  resistance  of  the 

ground  to  penetration  ? 

Velocity  of  driver  just  before  striking  pile 

=^2  .  32  .  9  ft.  per  sec.  =  24  ft.  per  sec. 

Driver  and  pile  begin  to  move  together  with  velocity 

:r^  .  24  ft.  per  aec.=if^  ft.  per  sec. 

Driver  and  pile  have,  to  start  with,  kinetic  energy 

^  .  101  .  (1011)2  foot-tons. 

Let  the  resistance  be  P  tons'  weight. 
Driver  and  pile  move  against  resultant  upward  force  P  - 10| 

tons'  weight  through  distance  ̂   foot. 
Work  done  against  this  resistance  is 

(P-lOi).  I  foot-tons. 

p=m+fi.R^)2 
=  10^-}-l71f -181f|. 

Eequired  resistance  is  181^  tons'  weight. 
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Exercises  XVIII.  b. 

1.  A  7  lb.  mass,  moving  with  a  velocity  of  10  feet  per  second, 
strikes  against  a  4  lb.  mass  at  rest,  and  the  two  move  on  together. 
Wliat  is  their  kinetic  energy  in  foot-poundals  ? 

2.  A  body  of  mass  60  kilograms,  moving  with  velocity  40  metres 
per  second,  strikes  against  an  equal  mass  at  rest,  and  the  two  move 
on  together.     How  many  ergs  of  energy  are  converted  into  heat  ? 

3.  A  half-ounce  bullet  is  fired  horizontally  into  a  piece  of  wood  of 
20  lbs.  mass  suspended  by  strings  so  that  it  can  swing  freely.  The 
wood  rises  through  a  vertical  height  of  7  inches.  What  was  the 
velocity  of  the  bullet  ? 

4.  A  1-oz.  ball  thrown  horizontally  against  the  bob  of  a  pendulum 
of  mass  2  oz.  with  a  velocity  of  10  feet  per  second  rebounds  with  a 
velocity  of  3  feet  per  second.  With  what  velocity  does  the  pen- 

dulum begin  to  move  ?  and  how  high  does  it  rise  ? 

5.  A  truck  of  mass  4  tons  running  on  smooth  rails  with  a  velocity 
of  8  feet  per  second  strikes  another  of  mass  5  tons  at  the  foot  of  a 
slope  of  1  in  81.     How  far  up  the  slope  do  they  run  together? 

6.  A  ball  slides  down  the  sloping  part  of  a  smooth  groove,  falling 
vertically  1  foot,  and  strikes  a  row  of  four  exactly  similar  balls  on 
the  horizontal  part  of  the  groove,  which  begin  to  slide  off  with  a 
velocity  of  3  feet  per  second.  Show  that  the  first  ball  rebounds  and 
ascends  the  sloping  groove  to  a  vertical  height  of  3  inches, 

7.  Two  masses  of  4  and  8  lbs.  are  connected  by  a  string  which 
passes  over  a  light  smooth  pulley.  The  4  lb.  mass  drops  through  4 
feet,  and  then  the  string  becomes  tight,  and  the  other  body  which 
was  at  rest  begins  to  ascend.  Find  the  initial  common  velocity, 
and  how  far  the  8  lb.  mass  will  ascend. 

8.  A  body  of  mass  m  falls  from  a  height  h  and  then  penetrates  a 
depth  a  into  the  ground.     Show  that  the  resistance  to  penetration 

-  +  1  J  gravitation  units. 

9.  A  body  of  mass  m  falls  from  a  height  h  on  the  top  of  a  spike  of 

mass  m',  which  it  drives  a  depth  a  into  the  ground.     Show  that  the 

resistance  to  penetration  is  ;   rr-  +  m  +  m'  gravitation  units. 
^  {m  +  m')a  * 

10.  How  is  the  formula  v^  —  ̂ fs  obtained? 
Two  masses,  of  3  lbs.  and  5  lbs.  respectively,  are  resting  close 

together  on  a  smooth  horizontal  plane,  and  are  connected  by  a  string 
16  feet  long.  If  the  5  lb.  mass  is  acted  upon  by  a  constant  horizontal 
force  of  10  poundals,  what  will  be  its  velocity  when  the  string  be- 

comes tight,  and  with  what  velocity  will  the  other  mass  begin  to 
move  ?     (Coll.  Precep. ,  1898. ) 

11.  If  a  mass  of  121  lbs.,  originally  at  rest  at  the  bottom  of  a 
pit,  is  raised  with  a  uniform  acceleration  of  2  feet  per  second  per 
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second,  what  will  be  the  kinetic  energy  of  the  mass  at  the  end  of  5 
seconds  ?  and  how  much  w^ork  will  then  have  been  done  in  raising  it  ? 
(Coll.  Precep.,  1898.) 

12.  A  particle  slides  in  a  straight  line  on  a  smooth  plane  against 
a  constant  resistance  ;  at  a  certain  point  its  velocity  was  15  feet  a 
second,  and  at  a  point  12  feet  further  on  its  velocity  was  8  feet  a 
second  ;  its  mass  is  7  lbs.  ;  find  its  kinetic  energy  in  each  position, 
and  the  resistance  against  which  it  was  moving. 

State  in  what  units  of  energy  and  force  your  results  are  expressed, 
and  define  those  units,     (Science  and  Art,  1897.) 

13.  A  particle,  whose  mass  is  10  lbs.,  moves  in  a  straight  line, 
and  its  velocity  is  changed  from  210  feet  a  second  to  90  feet  a  second ; 
find  the  numerical  value  of  the  change  of  its  kinetic  energy.  State 
what  units  are  used  in  your  answer. 

If  the  change  is  produced  by  a  force  equal  to  3  lbs.  weight  {g  =  32), 
through  what  distance  does  the  particle  move  while  its  kinetic 

energ}'^  is  undergoing  the  change?     (Science  and  Art,  1898.) 
14.  State  the  principle  of  the  Conservation  of  Energy,  and  use  it 

to  find  with  what  velocity  a  bicycle  must  start  the  ascent  of  a  hill  20 
feet  high  in  order  that  it  may  just  reach  the  top  although  the  rider 
does  no  work.     (Camb.  Sr.  Loc,  Stat.  Dyn.  and  Hydro.,  1896.) 

15.  A  marble  weighing  one  ounce  falls  from  rest  from  a  height  of 
100  feet  and  reaches  the  ground  with  a  velocity  of  64  feet  per 
second.  Find  how  much  work  has  been  spent  against  the  resistance 
of  the  air,  expressing  the  result  in  foot-pounds.  (Camb.  Sr.  Loc, 
Stat.  Dyn.  and  Hydro.,  1898.) 

16.  When  is  a  force  said  to  do  work,  and  how  is  the  work 
measured  ? 

Masses  of  10  and  15  ounces  are  suspended  from  the  ends  of  the 

string  of  an  Attwood's  Machine  ;  calculate  in  foot-pounds  the  total 
work  done  on  both  masses  by  gravity  when  the  heavier  mass 
descends  3  feet.     (Oxford  Locals,  1898.) 

17.  A  body,  the  mass  of  which  is  10  pounds,  is  moving  with  a 
velocity  of  50  feet  per  second.  How  much  is  its  kinetic  energy? 
How  much  is  its  momentum?  State  the  units  in  which  your 
answers  are  expressed.  If  half  its  energy  were  given  to  a  body  of 

20  lbs.'  weight,  with  what  velocity  would  this  latter  be  then 
moving?     (London  Matric,  1899.) 

18.  If  a  penduhim  bob  weigh  2  pounds,  and  in  swinging  rises  to  a 

height  of  xo^^^s  of  an  inch  at  the  end  of  its  swing,  calculate  the 
potential  energy  it  has  received.  Assuming  that  in  the  descent  of 
the  bob  during  the  next  half  of  the  return  swing  all  this  potential 
energy  is  transformed  into  kinetic  energy,  calculate  the  speed  it  will 
acquire.  How  would  you  propose  to  measure  the  height  through 
which  the  centre  of  gravity  of  the  bob  rises  and  falls  while  swinging  ? 
IN.B. — The  acceleration  of  gravity  may  be  taken  as  .32  feet  per 
second  per  second.]     (London  Matric,  1899.) 
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Summary. 

Potential  Energy  is  the  energy  possessed  by  a  body  in  virtue  of  its 
position  ;  as  in  tlie  case  of  a  body  raised  to  a  height.  This  energy 
can  be  converted  into  energy  of  motion  by  letting  the  body  fall. 

Kinetic  Energy  is  the  energy  possessed  by  a  body  in  virtue  of  its 
motion. 

Potential  energy  of  mass  m  raised  to  a  height  h  is  mh  gravitation 
or  mgh  absolute  units. 

There  are  in  nature  many  other  examples  of  energy  stored  up  in 
bodies,  which  may  be  called  potential  energy,  besides  the  mechanical 
potential  energy  of  a  raised  weight.  For  instance,  the  molecular 
energy  of  a  bent  spring,  the  chemical  energy  of  coal. 

Conservation  of  Energy.  Energy  carmot  be  created  or  destroyed 
by  any  means  known  to  us.  It  can  only  pass  from  one  body  to 
another  and  be  transformed  from  one  form  into  another.  When  an 
agent  does  work  it  only  transforms  energy.  The  entire  amount  of 
energy  in  the  universe  is  unalterable. 

Perpetual  Motion.  Attempts  made  to  produce  a  machine  which 
shall  do  work,  or  even  continue  to  keep  itself  in  motion,  without  the 
supply  of  energy  to  it  from  without  must  ever  be  futile,  because  this 
is  contrary  to  the  principle  of  the  conservation  of  energy. 

Motion  on  Inclined  Plane.  In  the  case  of  a  body  moving  freely  on 
an  inclined  plane  the  increase  in  its  potential  energy  is  measured  by 
the  product  of  its  M'eight  and  the  vertical  height  through  which  it 
rises,  and  this  is  equal  to  the  decrease  in  its  kinetic  energy. 
Pendulum.  In  the  case  of  a  pendulum  swinging  to  and  fro  the 

energy  is  continually  changing  from  potential  to  kinetic  and  back 
again.  But  the  sum  of  the  energies,  supposing  that  the  swings  do 
not  die  away,  remains  constant. 

Bodies  connected  by  a  string  passing  over  a  smooth  light  pulley 
can  have  their  velocity  in  any  position  determined  from  the  fact  that 
the  kinetic  energy  at  any  instant  is  equal  to  the  nett  amount  of  work 
which  has  been  done  on  them  by  gravity,  or  their  loss  of  potential 
energy. 

Energy  after  Collision.  When  two  bodies  collide  some  of  the 
energy  which  they  possessed  is  always  converted  into  heat  by  the 
impact.  The  amount  that  is  thus  lost  will  depend  on  the  circum- 

stances of  the  motion,  as  well  as  on  the  materials  of  which  the 
bodies  are  made. 



CHAPTER  XIX. 

RELATIVE  VELOCITY  AND  ACCELERATION.  COM- 
POSITION OF  VELOCITIES  AND  ACCELERATIONS. 

UNIFORM  CIRCULAR  MOTION. 

Relative  Velocity  and  Acceleration.— If  two  bodies,  A  and 
5,  are  moving  along  the  same  straight  line,  then  the  rate  at 
which  the  distance  of  A  from  B  is  increasing  is  called  the 

velocity  of  A  relative  to  B ;  and  the  rate  at  which  this 
relative  velocity  is  increasing  is  called  the  acceleration  of  A 
relative  to  B. 

Relative  velocity  and  acceleration  along  a  straight  line  are,  of 

course,  susceptible  of  algebraical  signs,  just  like  ordinary  velocity 
and  acceleration. 

If,  for  example,  distances,  etc.,  are  measured  to  the  right,  and 

A  is  to  the  right  of  B,  but  getting  nearer  to  B,  A  has  a  negativ^e 

velocity  relative  to  B.  And  if  ̂ 's  velocity  of  relative  approach 
to  B  is  getting  smaller  and  smaller,  so  that,  if  the  accelerations 
remain  the  same,  A  will  ultimately  recede  from  B  rightwards, 

A  has  a  rightward  or  positive  acceleration  relative  to  B. 

Example. — Two  bodies  start  from  the  same  point  in  a 
straight  line  at  the  same  instant  and  move  in  opposite 
directions,  one  with  a  constant  velocity  of  7  metres  per 

second,  and  the  other  with  an  initial  velocity  of  10  metres 

per  second,  and  an  acceleration,  in  the  same  direction, 

of  3  metres  per  second  per  second.  Find,  in  metres 
and  seconds,  their  distance  apart,  their  velocity  of 

separation,  and  their  relative  acceleration  at  the  end  of 
3  seconds. 
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In  tlii-ee  seconds  the  distances  tiavelled  are 

7  .  3  =  21  metres, 

and  10.3  +  1.3.32  =  43^  metres. 

.*.   distance  apart  =  64^  metres. 

The  velocities  are  7  metres  per  sec,  and  10  +  3.3  =  19  metres 

per  sec. 
And  these  are  in  opposite  directions, 

.*.   velocity  of  separation  =  26  metres  per  sec. 
The  first  velocity  is  constant,  the  second  increases  at  the 

rate  of  3  metres  per  sec.  per  sec. 

.*.  the  velocity  of  separation  increases  at  the  rate  of,  or  the 
relative  acceleration  is,  3  metres  per  sec.  per  sec. 

Suppose  that  A  is  to  the  right  of  B,  and  that  ̂ 1  is  moving 

with  a  velocity  of  v  feet  per  sec,  and  B  with  a  velocity  of  v'  feet 
per  sec 

(i)  If  the  velocities  are  uniform,  in  one  second  A  and  B  will 

move  through  v  and  v'  feet  to  the  right. 
.*.  A  will  he  v  —  v'  feet  further  from  B. 

.'.  the  rate  at  which  the  distance  from  ̂   to  ̂   is  increasing  is 

v  —  v'  feet  per  sec,  i.e.  A^s  velocity  relative  to  i?  is  v  —  v'  feet  per 
second  rightwards. 

If  A  is  to  the  left  of  B,  A  is  approaching  B  at  the  rate  v  —  v' 
feet  per  second. 

^'s  velocity  relative  to  B  is  still  v  —  v'  feet  jjei  second  right- 
wards. 

If  the  signs  of  any  of  the  quantities  ̂ ,  v\  v  -  v'  are  negative, 
the  velocity  of  A  relative  to  B  rightwards  is  always  v  —  v'  feet 
per  second. 

(ii)  If  the  velocities  are  not  uniform  ;  then  if  the  velocities 
were  to  remain  uniform  for  a  whole  second  and  equal  to  what 

they  are  at  the  instant  in  question,  A  would  travel  through  v  —  v' 
feet  rightward  relative  to  B. 

.  .  at  the  instant  in  question  ̂ 's  velocity  relative  to  Bisv  -v' 
feet  per  second  rightward. 

If  the  accelerations  of  A  and  B  to  the  right  are  a  and  a'  at  any 
instant,  then  the  rate  at  which  A  is  acquiring  velocity  relative 

to  B  to  the  right  is  a  —  a'. 
That  is,  .4's  acceleration  relative  to  B  to  the  right  is  a  —  a'. 
E.S.  T 
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As  an  example  of  a  question  solved  by  the  method  of  relative 
velocities  consider  the  following  : 

Example. — A  body  is  let  fall,  and  one  second  after  another 
is  thrown  down  with  a  velocity  of  48  feet  per  second.  In 
what  time  after  starting  will  it  overtake  the  first  ? 

In  t  seconds  after  the  second  body  starts  the  velocities  of  the 
two  bodies  are 

32  (if +  1)  and  48  +  32^5  feet  per  second. 

.".  second  body  approaches  the  first  at  the  rate  of  16  feet 
,  ,     per  second. 

";■' And  when  the  second  body  starts  the  first  has  descended 
16  feet. 

,'.   the  second  body  overtakes  the  first  in  1  second  after 
starting. 

[This  question  could,  of  course,  also  be  solved  by  writing  down 
the  distances  travelled  by  the  bodies  at  the  end  of  t  seconds  after 

the  second  starts  and  equating  the  expressions.] 

Composition  of  Velocities. — A  body  may  have  two  separate 
independent  velocities  at  the  same  time,  as  for  instance  when  the 

body  is  carried  in  a  carriage  and  is  at  the  same  time  moved 

relatively  to  the  carriage.  The  body  will  have  a  resultant 
velocity  made  up  of,  or  compounded  of,  the  velocity  of  the 

carriage  and  the  velocity  of  the  body  relatively  to  the  carriage. 
To  find  its  resultant  velocity  from  the  other  velocities  is  called 

compounding  these  velocities. 
If  the  motion  of  the  body  relatively  to  the  carriage  is  in  the 

same  direction  as  the  motion  of  the  carriage,  that  is,  if  it  is 

parallel  to  the  line  along  which  the  carriage  is  moving,  then,  if 
both  the  motions  are  in  the  same  sense,  it  is  clear  that  the  rate 

at  which  the  body  is  moving  away  from  or  towards  a  fixed  point 
in  the  line  of  motion  is  the  sum  of  the  velocities ;  if  they  are  in 

opposite  senses  the  rate  is  the  difference  of  the  velocities. 
Thus  velocities  along  the  same  straight  line  are  compounded 

by  adding  them  if  they  are  in  the  same  sense  and  by  subtracting 
them  if  they  are  in  opposite  senses. 

Triangle  of  Velocities. — The  more  general  case  in  which  the 
two  component  velocities  are  not  in  the  same  direction  may  be 
illustrated  in  the  following  way  : 
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Suppose  a  body  to  move  in  a  straight  groove  cut  in  a  board 
while  the  board  moves  in  a  straight  line  on  a  table. 

Let  the  body  start  from  A.  Let  AB  he  the  distance  on  the 

board  through  which  the  body  moves 
uniformly  in  a  second.  Let  ABhe 

taken  equal  and  parallel  to  the  dis- 
tance through  which  the  board  moves 

on  the  table  in  a  second.  And  sup- 
pose these  two  motions  to  take  place 

simultaneously.  A  B 

Draw  the  parallelogram ^^CZ)and         Fio.  147.— Composition  of 
its  diagonal  AC. 

Now  at  the  end  of  a  second  the  position  of  the  body  will  clearly 
be  the  same  as  if  the  motions  had  taken  place  consecutively 
instead  of  simultaneously. 

Suppose  the  board  to  move  through  the  distance  AB  first. 

This  brings  the  body  to  B.  Now  let  the  body  move  on  the 
board.  Then  since  BC  is  equal  and  parallel  to  AB  this  motion 

brings  the  body  to  C. 
Again,  since  the  two  motions  take  place  uniformly  and  at 

the  same  time  it  is  clear  that  at  the  end  of  any  fraction  of  the 

second  the  body  will  have  undergone  displacements  parallel  to  AB 
and  A  B  and  equal  to  the  same  fraction  oiAB  and  A  B  respectively. 

This  will  bring  it  to  a  point  on  ̂ (7  at  a  distance  from  A  equal 
to  the  same  fraction  of  AC. 

Hence  the  body  moves  over  the  table  with  a  uniform  velocity 
which  takes  it  from  ̂   to  C  in  the  second. 

Again  if  AB,  AB  are  lines  drawn  parallel  and  proportional  to 

the  actual  independent  displacements,  AC  will  be  parallel  and 
proportional  on  the  same  scale  to  the  resultant  displacement. 

And,  as  these  lines  represent  the  displacements  per  second,  they 
represent    the  velocities. 

Thus  if  AB,AB  represent  in  direction  and  magnitude  the  two 
independent  velocities  of  the  body  the  diagonal  ̂ C  of  the 
parallelogram  ABCB  represents  the  resultant. 

Again,  we  may  take  AB,  BC,  two  sides  taken  in  order  of  the 
triangle  ABC,  to  represent  the  two  independent  velocities  ;  then 
AC,  the  third  or  closing  up  side,  represents  the  resultant. 

This  proposition  is  called  the  Triangle  of  Velocities. 
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Fig.  148. 

Example. — A  train  is  travelling  at  the  rate  of  24  feet  per 
second,  and  a  person  throws  a  stone  out  of  the  window  at 

right  angles  to  the  train  with  a  velocity  of  10  feet  per 
second.     Find  the  actual  velocity  of  the  stone. 

Draw  AB  to  denote  the  velocity  of  the  train,  and  BC  at 
right  angles  to  it  to  denote  the 
velocity  with    which  the   stone  is 
thrown  from  the  train. 

Then  the  actual  velocity  of  the  stone 
is  denoted  by  AC. 

AC^  =  AB'  +  BC\ 

:.   velocity  of  stone 

=  v/(24)''^  +  (10)2  feet  per  sec. 
=26  feet  per  sec. 

Example. — In  what   direction   must  a  steamer,  which  is 
making  10  knots  an  hour,  head  so  as  to  go  due  east  if  it  is 
in  a  current  flowing  south  at  the  rate  of  5  knots  an  hour? 

li  AB  represents  the  velocity  of  the  steamer  in  the  current 

''  and  BC  the  velocity  of  the  current, 
AC  is  the  resultant  velocity  of  the 
steamer. 

Then  AB  =  ̂ BC, 

and  A  CB  is  a  right  angle. 

Fig.  149.  .-.    a.BAC=ZO\ 

The  steamer  must  head  30°  north  of  east. 

The  same  remarks  apply  to  the  Triangle  of  Velocities  as  to 

the   Triangle   of   Forces   (p.  15).      The  lines  representing  the 

two  component  velocities  are  to  be  drawn  in  order  ;  one  begins 
where  the  other  leaves  of£     The  resultant 

velocity  is  represented  by  the  line  drawn 

from  the  starting-point  of  one  of  these  to 

the  stopping-point  of  the  other. 
In  the  above  example  it  would  be  equally 

correct  to  draw  the  figure  in  a  different 

way.  Take  A  B,  BC  to  represent  the  velo- 
cities of  the  current  and  of  the  steamer,  and  then  A  C  represents 

the  resultant  velocity. 

Fig.  150. 
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In  general  the  triangle  showing  the  resultant  velocity  can  be 
drawn  in  either  of  two  ways. 

Example. — AB,  BC  are  two  straight  lines  making  the 

angle  ABC  120°.  A  body  moves  from  A  to  B  with 
velocity  V.  What  velocity  must  then  be  given  to  it,  and 
in  what  direction,  that  it  may  move  along  BC  with 
velocity  T? 

Produce  AB  to  Z>,  making  BD  p^ 
equal  to  BC. 

Take  the  lines  BD  and  BC  to 

represent  the  velocities  V  in 
their  directions. 

Join  DC. 

Then  Z>Crepresents  the  velocity 
that    must    be    compounded 

with  T^along^Z?/)  to  produce 
Vslong  BC. 

BCD  is  an  equilateral  triangle, 
and   DC  is   parallel   to  the 

bisector  of  the  angle  ABC. 

Hence  the  required  velocity  is  F  in  the  direction  bisecting 
the  angle  ABC. 

It  is  clear  that  in  this  question  A  B,  BC  could  not  have  been 
used  to  represent  the  two  velocities,  because  V  along  AB  is  one 

of  the  components,  and  V  along  BC  is  the  resultant,  and  BC 
neither  starts  where  AB  starts,  nor  stops  where  AB  stops  ;  but 
BC  starts  where  AB  stops,  whereas  the  resultant  must  start 
where  one  component  starts  and  stop  where  the  other  stops. 
A  different  construction  could  have  been  made  by  drawing 

CE  parallel  to  BA  and  making  CE  and  CB  equal,  and  taking 

EC  and  BC  to  represent  the  velocities  V  along  AB  and  BC. 

The  required  velocity  would  then  be  represented  by  BE,  which 
would  give  the  same  result  as  before. 

Composition  of  Accelerations. — In  just  the  same  manner  as 
for  velocities,  if  two  independent  accelerations  are  represented 
in  direction  and  magnitude  by  the  two  straight  lines  AB,  AD 

(Fig.  147),  their  resultant  is  represented  by  the  diagonal  AC. 
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For  the  accelerations  are  the  velocities  acquired  per  unit  of 

time,  and  since  the  two  independent  velocities  acquired  per  unit 
of  time  are  AB  and  AD,  the  resultant  velocity  acquired  per 

unit  of  time  is,  by  the  rule  for  compounding  velocities,  AC. 
That  is,  the  acceleration  is  AC. 

Exercises  XIX.  a. 

1.  Find  the  resultant  of  two  velocities,  in  directions  at  right  angles, 
of  24  and  7  feet  per  second. 

2.  A  stone  is  thrown  out  of  a  carriage  window  with  a  velocity 
equal  to  twice  that  of  the  carriage.  How  must  it  be  thrown  that  it 
may  move  at  right  angles  to  the  direction  in  which  the  carriage  is 
going  ? 

3.  A  steamer  is  in  a  current  flowing  with  half  the  velocity  of  the 
steamer.  What  is  the  greatest  angle  by  which  the  current  can 
divert  the  course  of  the  steamer  ? 

4.  The  direction  in  which  a  steamer  is  heading,  the  direction  of 
the  current  in  which  it  is,  and  the  magnitude  and  direction  of  its 
actual  velocity  are  all  known.  Show  how  to  find  by  a  geometrical 
construction  the  velocities  of  the  steamer  in  the  water  and  of  the 
current. 

5.  A  boat  starting  from  one  bank  of  a  river  and  steaming  with  a 
known  velocity  has  to  proceed  straight  to  a  point  on  the  other  bank. 
The  rate  of  the  current  is  known.  Give  a  geometrical  construction 
to  show  the  direction  in  which  the  boat  must  head. 

6.  A  body  moves  with  a  uniform  velocity  V  round  the  perimeter 
of  an  equilateral  triangle.  What  velocity  must  be  impressed  on  it 
at  each  angular  point  ? 

7.  Find  by  construction  the  least  velocity  a  boat  can  have  to 
reach  a  point  on  the  opposite  bank  of  a  river  lower  down  than  the 
one  from  which  it  starts,  when  the  stream  is  flowing  at  a  given  rate. 
And  show  that  with  this  least  velocity  it  must  head  in  a  direction 
at  right  angles  to  that  in  which  it  has  to  go. 

8.  Show  that  with  any  velocity  greater  than  that  of  the  stream  a 
boat  can  reach  any  point  on  either  bank. 

Independence  of  Motions. — A  body  may  have  two  velocities 
in  two  different  directions,  one  or  both  of  these  velocities  being 
accelerated  in  these  directions,  and  the  two  motions  will  be 

quite  independent  of  each  other. 

Frequent  examples  of  this  aiise  from  cases  of  bodies  which  are 

projected  in  directions  which  are  inclined  to  the  vertical.  A 

body  projected  in  this  way  will  have  a  horizontal  component  of 
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velocity  which  remains  constant  tliroughout  the  motion  and  a 
veitical  component  which  has  the  downward  acceleration  due  to 

gravity. 
In  questions  of  this  sort  the  consideration  of  the  vertical 

motion  will  generally  give  us  the  time  for  which  the  body  is 

moving,  that  is,  for  instance,  before  it  strikes  the  ground  ;  and 
the  horizontal  motion  determines  the  horizontal  distance  travelled 
in  that  time. 

Example.— A  body  is  projected  with  a  velocity  V  at  an 

angle  of  45°  to  the  horizon.     Show  that  it  will  strike  the 

ground   at   a   horizontal   distance  —   from  its  point  of 

projection. 
V 

Initial  vertical  component  of  velocity  =  -p. 

If  body  returns  to  the  ground  in  time  t,  by 
s=ut  +  ̂ at\ 

9  
 ' 

V 

Constant  hoi'izontal  component  of  velocity  = -p. 
\^2  V 

.' .  Distance  travelled  horizontally  in  time   is 

9     '  V2~  9  ' 
Exercises  XIX.  b. 

1.  A  body  is  projected  horizontally  with  a  velocity  60  feet  per 
second  from  a  height  of  96  feet  above  the  ground.  At  what  dis- 

tance, measured  horizontally,  from  its  point  of  projection  will  it 
strike  the  ground  ? 

2.  With  what  velocity  must  a  stone  be  projected  horizontally 
from  the  top  of  a  tower  200  feet  high  so  as  to  reach  a  point  800  feet 
from  the  foot  of  the  tower  ? 

3.  Show  that  the  velocity  with  which  a  body  must  be  projected 

in  a  direction  making  an  angle  60°  with  the  horizon  so  as  to  reach  a 
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point  on  the  liorizontal  plane  at  a  distance  a  from  the  point  of 

projection  is  -  /   .^* 

V3 

4.  Show  that  a  body  thrown  vertically  upwards  from  a  carriage 
moving  with  uniform  velocity  in  a  straight  line  (that  is,  vertically 
with  reference  to  the  carriage)  will  return  to  the  point  in  the 
carriage  from  which  it  was  thrown. 

Uniform  Circular  Motion. — Suppose  a  body  to  move  round 
the  circumference  of  a  circle  with  a  velocity  which  is  constant 

in  magnitude  and  equal  to  v  units  of  length  per  unit  of  time. 

In  any  interval  of  time  the  body  describes  an  angle  with 
respect  to  the  centre  which  is  proportional  to  the  time,  that  is, 
it  passes  over  an  arc  of  the  circle  which  subtends  an  angle  at  the 
centre  proportional  to  the  time. 

Circular  Measure  of  Angles.— Now,  suppose  the  angle  to  be 
measured  in  circular  measure. 

The  circular  measure  of  an  angle,  such  as  the  angle  AOB, 
which  the  arc  AB  subtends  at  the 

centre  0  of  the  circle  AB^  is  equal  to 

the  arc  AB  divided  by  the  radius  OA 
of  the  circle. 

The  same  value  would  be  obtained 

whatever  be  the  size  of  the  circle  de- 

scribed with  its  centre  at  the  angular 

point  0,  and  having  an  arc  lying  within 
the  angle,  because  with  a  given  angle 
the  arc  is  proportional  to  the  radius. 

If  we  take  a  larger  circle  A'B'  with 
centre  0  from  which  to  determine  the  angular  measure  of  the 

angle  AOB^  we  would  get  in  one  case 

AB       ,  .     ̂ ,       ̂ ,       A'B', I  -TTT  and  m  the  other  -pr-T/  > OA  OA 

and  these  two  are  equal  to  one  another. 

Hence  the  measure  arc -^radius  is  always  the  same  for  a  given 
angle,  no  matter  what  the  size  of  the  radius  taken. 

Thus  we  have  the  definition, 

Circular  measure 

circular  measure- 
arc 

radius 
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Angular  Velocity. — The  rate  at  which  a  body  or  point  moving 
round  the  circle  increases  the  angle  described  with  reference  to 

the  centre  is  called  its  arigular  velocity/. 
Denote  the  radius  OA  by  r. 
Thus,  if  the  arc  AB  is  described  in  time  t ; 

linear  velocity  of  moving  point  =  AB-^t ; 

angular  velocity  of  moving  point  =  -   '-t. 
Let  the  angular  velocity  be  denoted  by  w. 

rp,  AB  AB 
t  rt 

v 
.'.  (i)  —  -;   or  v  =  (j)r. r 

We  may  show  this  in  another  way. 
By  definition, 

(0  =  angle  described  in  unit  of  time 

_arc  described  in  unit  of  time 
radius 

=  -  (*.•  V  means  arc  described  in  unit  of  time). 

.*.  v=(Dr. 

This  is  a  very  important  result. 

Speed. — The  word  speed  is  often  used  to  denote  the  mere 
magnitude  of  a  velocity  without  any  reference  to  its  direction. 

To  specify  a  velocity  we  must  state  both  magnitude  and 

direction.  Speed  means  magnitude  of  velocity  only.  In  other 
words,  a  velocity  is  a  speed  in  a  definite  direction. 

It  will  be  convenient  to  speak  of  the  speed  of  a  body  moving 
in  a  circle,  the  body  having  a  velocity  that  is  constantly  changing 
in  direction. 

The  angle  whose  circular  measure  is  unity,  or  whose  arc  is 
equal  to  the  radius  of  the  circle,  is  called  a  radian. 

In  many  questions  on  circular  motion  account  has  to  be  taken 

of  the  circular  measure  of  the  angle  described  by  a  body  which 
moves  once  round  the  circumference  of  a  circle. 

The  measure  of  this  angle  is 
circumference  of  circle 

radius  of  circle 
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The  ratio  of  the  circumference  of  a  circle  to  its  diameter  is 

usually  denoted  by  the  symbol  tt  ;  and  is  numerically  equal  to 

about  3},  or  more  exactly  3'1416. 
Thus,  if  r  is  the  radius  of  a  circle,  circumference  =  27rr, 
Circular  measure  of  angle  described  by  body  which  moves 

once  round  circumference  is 

r 

In  other  words  we  may  say  that  the  circular  measure  of  four 

right  angles  is  27r  ;  or,  again,  that  four  right  angles  are  equal  to 
27r  radians. 

If  a  body  goes  uniformly  round  the  circle  n  times  in  a  second, 
its  angular  velocity  is 

27rw, 

for  this  is  the  entire  angle  swept  out  in  a  second. 

Geometrical  Propositions. — Before  considering  the  Dynamics 
of  a  body  or  heavy  particle  moving  in  a  circle  it  will  be  necessary 
to  notice  the  following  geometrical  propositions  : 

Let  J^  be  a  small  arc  of  a  circle  of  given  radius  OA. 

Draw  BN  perpendicular  to  OJ,  and  the  tangent  BT  to  meet 
OA  produced  at  T. 

Then  BA^  the  arc,  is  intermediate  in  length  between  BN  and 
BT. 

For  BN  being  the  perpendicular  from 
^  on  OT  \»  shorter  than  any  other  path 
from  B  to  OT. 

And  BA    is,    on   the   whole,  a   more 

direct  path  from  B  to  OT  than  ̂ 7^  is  ; 
that    is,    the  direction    of    BA    at    any 

point  more  nearly  coincides  with  the  direction  of   a  perpen- 
dicular to  OT  than  that  oi  BT  does  ;  except  only  at  the  point 

B,  where  the  directions  of  BA  and  BT  coincide  with  each  other. 
Hence  BA  is  shorter  than  BT. 

[This  reasoning,  although  not  professing  to  be  mathematically 

rigid,  shows,  in  a  general  way,  that  BA  is  longer  than  BN  and 
shorter  than  BT.^ 

Now  suppose  that  while  OA  remains  of  the  same  length, 
AB  becomes  indefinitely  short. 
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Then  1^=^. BT    OB 

But  OB=OA  ;    and  when  B  is  indefinitely  near  to  A,   ON 
becomes  equal  to  OA  ; 

BN 

.'.   "0777=1,  when  AB  is  indefinitely  short. 

And  BA  is  greater  than  BJV  and  less  than  BT. 
BN 

.•.    ̂ -.  =1,  when  AB  is  indefinitely  short. 
NTNB, 

BN    ON' 

Acjain, 

NB 

and  7Ta7"~^'  ̂ ^^"^  ̂ ^5  is  indefinitely  short ; 

.*.    DiiT=0,  m  the  same  case. 

BN 
And  NA  is  less  than  iVT',  and  -^  =  1  ultimately. 

NA 

.'.   -^.  =0,  when  AB  is  indefinitely  short. 
The  results  to  be  remembered  are  : 

When  the  arc  AB  is,  taken  indefinitely  short, 

BA     ̂   '     BA     ̂' 
We  might  say  that  BN  and  BA  become  equal.  But  this  does 

not  express  all  unless  we  are  careful  in  what  sense  we  are  to 
understand  the  statement.  The  quantities  become  equal,  of 

course,  since  each  becomes  zero.  But  the  point  to  notice  is 

that  their  ratio  ultimately  becomes  unity,  or  their  difference 

vanishes  in  comparison  with  either  of  them. 

With  regard  to  the  second  result,  we  may  say  that  NA  vanishes 
in  comparison  with  BA. 

Acceleration  of  a  Point  moving  with  Uniform  Speed  in  a 
Circle. — Suppose  a  point  to  move  with  uniform  speed  v  along 
the  circumference  of  a  circle  of  radius  r. 

Then,  although  the  speed  is  constant,  the  velocity  is  constantly 

changing,  for  it  changes  in  direction.  And  a  change  of  velocity 
implies  an  acceleration.  We  shall  therefore  investigate  what 
the  acceleration  is  in  this  case. 
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Now  acceleration  at  a  given  instant  means  rate  of  increase  of 
velocity  at  that  instant.  We  shall  find  it  by  considering  the 
mean  rate  of  increase  of  the  velocity  in  a  short  interval  of  time, 

and  then  finding  the  limiting  value  of  this  when  the  time  is 
made  indefinitely  short. 

Since  the  motion  of  the  body  does  not  keep  to  a  fixed  direc- 
tion, we  shall  not  expect  the  acceleration  at  any  instant  to  be  in 

the  direction  of  the  motion.  We  shall  examine  its  two  com- 

ponents in,  and  at  right  angles  to,  this  direction.  The  entire 

acceleration  is  compounded'of  these. 
Let  0  be  the  centre  of  the  circle, 

and  J,  B  two  neighbouring  points  on 
the  circumference. 

Draw  the  tangents  AT,  BT  at  A 
and  B. 

Draw  BM,  BN  perpendicular  to 
AT,  OA. 

At  A  the  point  has  velocity  v  along 
AT. 

At  B  the  point  has  velocity  v  along 
TB. 

This  last  may,  by  the  triangle  of 

velocities,  be  resolved  into  two  components  in  the  directions  of 
TM,  MB,  and  equal  to 

ATM 

Fig.  154.— Unifoi-m  motion 
in  a  circle. 

TM 
TB and 

^  respectively. 
Since  the  triangle  TMB  is  similar  to  ONB,  these  are  equal  to 

ON 
OB 

and 

^  respectively. 
Thus,  as  the  point  moves  from  A  to  J?  it  acquires  the  following 

velocities. 

In  direction  oi  AT  the  velocity 

ON  NA 

'ob-''=-'oa' 
In  direction  oi  AO  the  velocity 

NB         NB 

'OB^'OA' 

Now  the   time   in  which   these   increments  of  velocity  are 
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acquired  is  the  time  taken  by  the  point  to  move  from  A  to  B, 

that  IS  — . V 

Hence,  as  the  point  moves  from  A  to  B,  its  mean  rates  of 

increase  of  velocity  in  the  directions  AT,  AO  are,  respectively, 

^^AB  _f    iV^ 
^  •  0^  •    V  '     ̂̂         r  '  AB' 

NB    AB  y2    NB 
and  '^TTT'^' — J     or        —  .  -j-^. OA       V  '  r     AB 

The  actual  accelerations  of  the  point  when  it  is  at  ̂ ,  in  the 

directions  AT,  AO,  are  the  limiting  values  of  these  quantities 
when  AB  is  made  indefinitely  short. 

Hence,  there  is  no  acceleration  along  AT:  the  entire  acceler- 

ation  is  along  AO  and  is  equal  to  — . 

Again,  if  w  is  the  angular  velocity,  v  =  wr, 

.'.    acceleration  is  wV, 

Thus,  if  a  is  the  acceleration,  we  have  the  important  results, 

a  is  along  A  0  ; 

^'  2 

r 

Dynamical  Result. — Suppose  that  a  body  of  mass  m  is  con- 
strained to  move  with  uniform  velocity  v  along  the  circumference 

of  a  circle  of  radius  r. 

Then,  since  the  body  has  an  acceleration  which  is  towards  the 

centre  of  the  circle,  the  resultant  force  acting  on  it  is  towards 
the  centre  of  the  circle.  For,  by  the  Second  Law  of  Motion 

change  of  motion  is  in  the  direction  in  which  the  force  producing 
it  acts. 

Again,  the  acceleration  is  — . 

Therefore  the  resultant  force  acting  on  the  body  towards  the 

centre  of  the  circle  is,  by  the  equation  f=ma,  equal  to 

  absolute  units. 
r 

This  is  also  equivalent  to  rrna-r  absolute  units. 
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This  is  the  force  which  has  to  be  constantly  applied  to  the 
body  to  keep  it  in  its  circular  path.  If  this  force  were  removed 

the  body  could  only  move  in  a  straight  line,  according  to  the 
First  Law  of  Motion. 

As  an  example  of  the  action  of  a  force  in  keeping  a  body 
moving  in  a  circle,  if  a  stone  is  tied  by  a  string  and  whirled 

round,  a  tension  in  the  string  acts  on  the  stone,  constantly 
pulling  it  towards  the  centre,  and  so  keeping  it  in  its  circular 

path.  If  the  string  breaks,  the  stone  begins  to  move  off  along 
a  straight  line,  namely,  the  tangent  to  the  circular  path  at  the 
point  at  which  it  is  at  the  instant  when  the  string  breaks. 

Centrifugal  Force.— The  tendency  of  the  body  to  get  further 
away  from  the  centre  of  the  circle  is  sometimes  looked  upon  as 
if  it  were  due  to  a  force  pulling  it  away  from  the  centre  equal 

and  opposite  to  the  force  required  to  keep  it  in  the  circular 

path,  and  this  supposed  force  pulling  the  body  from  the  centre 
is  called  centrifugal  force.  There  is,  however,  no  such  force 

acting.  A  force  is  required  to  act  on  the  body  towards  the 
centre,  because,  with  the  given  motion,  the  body  has  acceleration 
towards  the  centre,  not  because  there  is  any  other  force  to  be 
overcome. 

To  make  this  plainer,  imagine  a  body  to  be  moved  along  with 

acceleration  in  a  straight  line.  A  force  is  necessary  to  do  this, 

not  because  there  is  any  force  pulling  the  body  back,  but 
because  its  motion  is  being  accelerated.  Whenever  a  mass 

undergoes  acceleration  in  any  direction,  a  force  must  act  on  it 
in  that  direction. 

The  name  'centrifugal  force'  is  then  rather  unscientific  and 
misleading,  but  as  it  is  frequently  used,  it  is  well  to  understand 

what  is  meant  by  it.  We  may  say  that  it  means  the  tendency 

of  the  body  to  get  further  away  from  the  centre  in  consequence 

of  its  own  inertia.  It  is  supposed  to  be  equal  to  the  force  which 

acts  towards  the  centre  to  hold  the  body  in  its  path. 

Centripetal  Force. — The  force  acting  on  the  body  and  directed 
towards  the  centre  to  hold  it  in  its  path  is  sometimes  called  the 

centripetal  force. 

Example. — With  what  velocity  is  a  point  on  the  circum- 
ference of  a  circle  moving,  the  circle  having  a  diameter  of 
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10  inches  and  rotating  about  its  axis  uniformly  500  times 
in  a  minute  ? 

In  one  second  circle  rotates  ̂ ^  times =^3^-  times. 

.' .    angular  velocity  =  ̂ ^  x  27r 

=  -;r—  radians  per  second. 

Radius  of  circle  =  ̂ 0  foot. 

,',    velocity  of  point  on  circumference 
507r     5    .    ̂   , 

=-x-  •  —  feet  per  second 

250x22,    , 

=  26x1  P^^  second 

=  feet  per  second 
00 

=  21f f  feet  per  second. 

Example. — What  fraction  of  the  weight  of  a  body  is  re- 

quired to  keep  it  from  flying  off  the  earth's  surface  at 
the  equator,  supposing  the  equatorial  radius  of  the  earth 

to  be  4000  miles  and  that  it  makes  one  complete  revolu- 
tion on  its  axis  in  a  solar  day  of  24  hours  ? 

Angular  velocity  of  earth  is 

27r  44  11 
radians  per  second. 24  X  3600     7  X  24  X  3600     7  .  24  .  900 

Consider  a  body  of  mass  m  lbs. 
Force  required  to  keep  this  in  its  circular  path  is  towards 

the  centre  of  the  earth  and  equal  to 

m(      24^00)  ̂  ̂^^^  ̂   ̂^^^  poundals 

113 

=^  •  72   3  ̂  92  poun
dals

. 

Weight  of  body  =  32  w  poundals. 

.*.   ratio  of  force  required  to  weight 
113  I 

=  «?rs  about. 72.3.92.32 
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Exercises  XIX.  c. 

L  Find  in  radians  per  second  the  angular  velocity  of  the  hour 
hand  of  a  clock. 

2.  Show  that  the  extremity  of  the  minute  hand  of  a  clock,  16  feet 
long,  passes  over  1  inch  in  about  3  s«iConds. 

3.  Find  the  number  of  miles  passed  over  in  space  by  the  earth  in 
1  second  in  consequence  of  its  annual  rotation  round  the  sun, 
supposing  its  path  to  be  a  circle  of  90  million  miles  radius. 

4.  A  stone  weighing  half  a  pound  is  tied  to  the  end  of  a  string  3 
feet  long  and  whirled  round  twice  a  second.  What  is  the  tension 

in  the  string  in  pounds'  weight  ? 
5.  A  body  of  mass  2  lbs.  is  fastened  to  the  rim  of  a  wheel,  and 

when  the  wheel  rotates  8  times  a  second  the  force  necessary  to  hold 

the  body  on  is  121  lbs.'  weight.      What  is  the  radius  of  the  wheel  ? 
6.  Show  that  the  attraction  exercised  by  the  sun  on  the  earth  to 

keep  it  in  its  path,  supposing  this  to  be  a  circle  of  90,000,000  miles 
radius,  and  that  the  earth  travels  round  the  sun  once  in  365  days  is 

equal  to  about  "00059  of  a  pounds'  weight  per  pound  mass  of  the earth. 

7.  Show  that  if  the  earth  rotated  about  its  axis  17  times  more 
quickly  than  it  does,  the  weight  of  a  body  would  not  cause  it  to  rest 
on  the  surface  at  the  equator. 

8.  What  is  the  rule  for  finding  the  magnitude  and  direction  of  the 
acceleration  which  is  produced  by  compounding  together  two  given 
accelerations?  What  is  the  joint  effect  of  an  acceleration  northward 
that  would  be  produced  by  a  force  of  50  dynes  when  acting  on  2 
grams,  and  of  an  acceleration  eastward  such  as  would  in  three 
seconds  give  a  body  initially  at  rest  a  velocity  of  21  centimetres  per 
second  ?    (London  Matric. ,  1898. ) 

9.  A  particle  is  moving  in  a  circle  whose  radius  is  8  feet,  and  the 
force  which  keeps  it  moving  in  the  circle  equals  the  weight  of  the 
body  at  a  place  where  g  =  32;  find  the  velocity  of  the  particle. 

State  what  is  meant  when  it  is  said  that  at  a  certain  place  g  is 
equal  to  32.     (Science  and  Art,  1897.) 

10.  A  particle  moves  in  a  circle  whose  radius  is  r,  and  the  force 
required  to  keep  it  moving  in  the  circle  is  F,  along  what  line  and  in 
what  direction  does  F  act  ?  Also  show  that  the  kinetic  energy  of 
the  particle  is  Fr-i-2.     (Science  and  Art,  1897.) 

11.  A  mass  of  one  pound  is  whirled  uniformly  at  the  end  of  a 

string  2  feet  long ;  it  moves  three  times  round  in  15^  seconds.  Ex- 
press the  tension  of  the  string  in  poundals.    (Science  and  Art,  1898.) 
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Summary. 

Relative  Velocity  and  Acceleration. — If  two  bodies  A  and  B  are 

moving  along  the  same  straight  line,  then  the  rate  at  which  ̂ 's 
distance  from  B  is  increasing  is  called  ̂ 's  velocity  relative  to  B, 
and  the  rate  at  which  this  relative  velocity  is  increasing  is  called 
A's  acceleration  relative  to  B. 

If  ̂ 's  velocity  and  acceleration  are  v  and  a  ;  and  B^s  are  v'  and  a', 
then  whatever  be  the  relative  positions  of  A  and  B  and  the  magni- 

tudes of  V,  a,  v',  a',  A's  velocity  and  acceleration  relative  to  B  are 
V  -  ?/  and  a  -  a'. 

Composition  of  Velocities. — A  body  may  have  at  the  same  time 
two  independent  velocities.  These  give  rise  to  a  single  resultant 
velocity. 

If  the  two  component  velocities  are  represented  by  two  sides  of  a 
parallelogram  drawn  from  a  point,  the  resultant  is  represented  by 
the  diagonal  throjjgh  the  same  point. 

If  the  two  component  velocities  are  represented  by  two  sides  of  a 
triangle  taken  in  order,  the  resultant  is  represented  by  the  third  side. 

Composition  of  Accelerations. — This  is  done  in  the  same  way  as 
for  velocities. 

Uniform  Circular  Motion.— The  circular  measure  of  an  angle  is 
arc  -=-  radius. 

If  a  body  moves  round  the  circumference  of  a  circle,  the  rate  at 
which  it  describes  an  angle  (measured  in  circular  measure)  about  the 
centre  is  called  its  angular  velocity. 
If  r  is  radius  of  circle, 

0}  angular  velocity, 
V  linear  velocity  ; 

^,  11-^       distance  per  sec. 
then  angular  velocity  =   y^   , '='  "^  radius 

or  v  =  (j}r. 

Speed  means  the  magnitude  of  a  velocity  without  reference  to  its 
direction. 

The  ratio  of  circumference  of  circle  to  radius  is  denoted  by  ir 

(which  is  about  3y). 

Hence  the  circular  measure  of  four  right  angles  is  27r. 

If  a  body  goes  round  circle  n  times  per  second,  its  angular  velocity 
is  27rn.. 

If  a  body  moves  with  uniform  speed  v  round  a  circle  of  radius  r, 

its  acceleration  at  any  instant  is  to  the  centre,  and  is  equal  to  r-/r 
or  rofi. 

Resultant  force  acting  on  body  is  mi^fr  or  mrbx^. 
E.s.  u 



CHAPTER  XX. 

SIMPLE  HARMONIC  MOTION.     PENDULUMS. 

Simple  Pendulum. — A  simple  pendulum  is  a  small  heavy 
body  suspended  at  the  end  of  a  light  string. 

The  words '  small '  and  '  light '  denote  that  th&  size  of  the  body 
and  the  mass  of  the  string  are  negligible. 

The  body  is  sometimes  called  the  bob  of  the  pendulum. 

If  the  pendulum  is  pulled  on  one  side  and  then  left  to  itself  it 

will  swing  backwards  and  forwards,  making  oscillations. 

Meaning  of  Oscillation. — By  an  oscillation  is  meant  a  to- 
and-fro  swing,  the  motion  from  one  end  of  the  path  to  the  other 
and  back  again. 

In  practice,  when  a  pendulum  is  set  to  swing  and  left  to  itself 
the  oscillations  gradually  become  smaller  and  smaller,  and  it  at 
length  comes  to  rest.  This  is  due  to  the  resistance  of  the  air  and 
to  the  small  amount  of  resistance  to  bending  that  the  string 
offers.  If  there  were  no  resistances  of  this  sort  the  oscillations 
would  not  diminish  in  size. 

Energy  changes  during  an  Oscillation.— Suppose  these 
disturbing  causes  not  to  exist.  Then  when  the  bob  is  at  the  ex- 

tremity of  its  path  its  velocity  is  for  an  instant  zero.  It  is  then 
in  its  highest  position.  So  that  it  has  lost  all  its  kinetic  energy 
and  possesses  the  maximum  of  potential  energy.  As  it  descends 
its  velocity  increases,  and  becomes  a  maximum  when  it  is  in  its 
lowest  position,  or  when  the  string  is  vertical.  It  ascends  to  an 
equal  height  on  the  other  side  coming  to  rest  for  an  instant  at 

the  extremity  of  its  path,  and  so  on,  the  sura  of  its  potential  and 
kinetic  energies  remaining  constant. 

The  motion  of  the  pendulum  will  be  better  understood  when 
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we  have  studied  the  characteristics  of  the  sort  of  motion  of  which 

it  forms  an  example. 

Simple  Harmonic  Motion.— Suppose  a  point  P  to  move  with 
uniform  speed  round  the  circumference  of  a  circle  with  centre  0. 

Let  Q  be  the  foot  of  the  perpendicular  from  P  on  the  fixed 

diameter  A  OA '. 
As  P  moves  round  the  circle  Q 

moves  to-and-fro  along  AA';  and  while 
P,  starting  from  A^  moves  round  the 

cii'cle  once,  Q  moves  from  A  to  A'  and 
back  to  A. 

The  motion  of  Q  in  the  path  AA'  \^ 
called  Simple  Harmonic  Motion. 

This  is  a  very  important  case  of 
motion  in  Mechanics  and  Physics ;  it 
is  written,  for  short,  S.H.M.  t:,     ̂ rc     o-     ,  i, 

'  '  Fio.  155. — Simple  harmonic 

The  velocity  of  Q,  at  any  instant  is  motion, 

the  resolved  part  of  P's  velocity  in  the 
direction  of  AA! . 

Draw  the  diameter  BOB' at  right  angles  to  AOA'. 

Suppose  P  to  move  in  the  sense  ABA'B'A. 
When  P  is  at  ̂   or  J',  ̂   is  at  A  or  ̂ ',  and  the  velocity  of  Q  is 

then  zero. 

When  P  is  at  i?  or  ̂ ',  ̂   is  at  0;  then  the  speed  of  Q  is 
a  maximum,  being  equal  to  that  of  P. 

Thus  the  motion  of  Q  is  such  that  at  A  it  has  for  an  instant 

zero  velocity ;  it  moves  towards  0  with  velocity  which  increases 
till  it  reaches  0 ;  then  the  velocity  is  a  maximum  ;  it  then 

decreases  till  Q  reaches  A',  when  the  velocity  is  again  zero.  As 
Q  moves  from  A'  back  to  0  the  velocity  undergoes  the  same 
changes  in  magnitude  as  before  ;  and  so  on. 

It  is  more  important,  however,  to  consider  the  acceleration  of 

Q  at  any  point  in  its  path. 

Tlie  acceleration  of  Q  is  always  in  the  line  AA'  \  for  since  its 

component  of  velocity  at  right  angles  to  A  A'  never  changes 
from  zero  it  has  no  component  of  acceleration  at  right  angles 

to  A  A'. 

The  acceleration  of  Q  is  the  component  along  AA'  of  the 
acceleration  of  P. 
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Now  let  OA  =  R ;  and  suppose  that  the  angular  velocity  of  P 
round  the  circle  is  w. 

P's  acceleration  is  co^PO  along  PO. 

This  may  be  resolved  into  (o^PQ  and  (o^QO  in  the  directions 
J'Q,  QO. 

:.    the  acceleration  of  Q  is  oy^QO  along  QO. 
Whatever  the  position  of  P,  and  whether  Q  is  moving 

towards  or  from  0,  the  acceleration  of  Q  is  urQO  and  is  from 

^to  0. 
It  is  easily  seen  that  the  acceleration  of  Q  is  always  towards  0, 

because  when  Q  is  approaching  0  its  velocity  is  increasing  in 

magnitude,  and  when  Q  is  receding  from  0  its  velocity  is  de- 
creasing in  magnitude. 

If  a  point  Q  moves  in  a  straight  line  A  A'  in  such  a  manner 
that  its  acceleration  is  directed  to  a  fixed  point  0  in  A  A'  and  is 
proportional  to  QO,  then  the  motion  of  Q  is  S.H.M.  (This  is  the 
converse  of  what  has  just  been  shown.) 

For,  suppose  the  acceleration  of  ̂   to  be  ̂  .  QO. 
And  let  the  velocity  of  Q  at  the  point  A  be  zero,  so  that  Q  starts 

from  A  towards  0. 

Now,  suppose  a  point  P  to  start  from  A  at  the  instant  when 
Q  starts  from  A,  and  to  move  with  angular  velocity  Jk  round 
a  circle  with  centre  0  and  radius  OA. 

Let  K  be  the  foot  of  the  perpendicular  from  P  on  AA'.  The 
acceleration  of  K  is  ̂ k  .  KO  towards  0. 

And  since  Q  starts  from  A  with  K,  each  having  the  same 

initial  velocity,  zero,  and  each  having  the  same  acceleration 
at  each  point  of  the  path,  the  velocity  and  the  position  of  each 
must  always  be  the  same.  That  is,  Q  always  coincides 
with  K. 

But  the  motion  of  ̂ is  S.H.M. 

.-.    the  motion  of  Q  is  S.H.M. 
The  time  that  P  takes  to  travel  once  round  the  circle  with 

angular  velocity  to  is  — . 

This,  therefore,  is  also  the  time  that  Q  takes  to  move  from  A 

to  A'  and  back  again.  This  time  is  called  the  period  of  the 
S.H.M. 

If  the  angular  velocity  of  P  is  w,  the  acceleration  of  Q  is 
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0)2 .  QO.     So  that  if  Q  has  acceleration  in  any  position  k  .  QO  the 
corresponding  angular  velocity  of  P  is  ̂ k. 

The  period  of  ̂ 's  motion  is  therefore  — , 

Motion  of  Pendulum.— Let  SO  be  the  string  of  the  pendulum, 

S  being  the  point  of  suspension  and  0  the  position  of  the  bob" 
when  not  swinging.     Let  SO  =  l. 

Suppose  the  pendulum  is  set  to  oscillate 

in  the  path  AOA'. 
Let  P  be  the  position  of  the  bob  at  any 

instant. 

If  m  is  its  mass,  it  is  acted  on  by  a 
force  mg  vertically  downwards. 

Draw  PT  the  tangent  at  P. 
The  force  mg  is  equivalent  to 

SP       ,       PT 
^^.^andm^^ 

in  the  directions  of  SP  and  PT. 

Now  the  motion  at  Pis  in  the  direction 
PT 

of  PT ;  and  it  is  the  force  rng-—~  which 

produces  the  acceleration  in  this  direction. 

Fig.    156.— Motion   of 
simple  pendulum. 

.'.   the  acceleration  along  PT  is  g 
PT 

ST' 

Now  suppose  that  the  oscillations  are  very  small,  so  that  even 

in  the  extreme  positions  A,  A'  the  string  is  deviated  only  a  very 
little  from  the  vertical. 

Then  the  path  AOA'  of  P  becomes  nearly  a  straight  line  ;  and 
in  the  expression  for  the  acceleration  a,t  P,  PT  becomes  practi- 

cally equal  to  PO  and  ST  to  SO,  that  is,  to  ̂  ;  so  that  the 

acceleration  is  ̂   .  PO. 

The  motion  of  P  is  then  approximately  the  same  as  the  motion 

of  a  point  in  a  straight  line  AOA'  moving  with  an  acceleration 

that  is  at  every  instant  directed  toward  0  and  is  equal  to  ̂  .  PO. 

Thus  when  the  pendulum  makes  small  oscillations  its  motion 
is  approximately  a  S.H.M. 

The  period  of  the  motion  is  27r-^/y?,  that  is,  27rA/-. 
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This  is  an  important  expression  and  should  be  remembered. 

Note  that  it  means  the  time  taken  by  the  pendulum  to  swing 
from  one  end  of  its  path  to  the  other  and  hack  again.  It  is  also 
called  the  time  of  an  oscillation. 

Sometimes  the  half  swing,  from  ̂   to  ̂ ',  is  called  an  oscilla- 
tion ;  but  it  is  better  to  use  the  word  to  mean  the  motion  of  the 

pendulum  up  to  the  instant  when  it  gets  back  to  its  original 

state,  that  is,  the  motion  from  A  to  A'  and  back  to  A. 
Determination  of  g  by  Simple  Pendulum.— The  simple 

pendulum  affords  an  accurate  method  of  determining  the 
acceleration  due  to  gravity. 

A  small  bob  is  suspended  by  a  very  fine  string,  and  the 
distance  from  the  point  of  suspension  to  the  centre  of  the  bob 

is  measured.  Call  this  I.  The  pendulum  so  formed  is  set  to 

make  small  oscillations.  By  observing  the  time  of  several 
oscillations,  and  dividing  this  by  the  number  of  oscillations, 
the  time  of  a  single  oscillation  is  found  with  considerable 
accuracy.     Let  this  be  T. 

Then  we  have 

_47rH 

•  •    9        rp2' 

Thus  g  can  be  calculated  from  quantities  that  are  known. 
Unavoidable  Errors. — Several  small  errors  are  unavoidable 

in  the  use  of  the  simple  pendulum.  The  bob  is  of  a  finite  size 

and  is  not  an  infinitesimally  small  particle,  as  has  been  supposed : 

the  string  though  very  light  has  some  mass  :  the  string  is  not 
infinitely  flexible,  but  some  force  is  required  to  bend  it.  All 
these  circumstances  influence  to  some  extent  the  time  of  an 

oscillation  and  introduce  errors  in  the  value  of  g  as  calculated 
by  the  formula  given  above. 

Compound  Pendulum.— A  rigid  body  such  as  a  rod  or  bar, 
set  to  oscillate  under  the  action  of  gravity  about  an  axis  rigidly 
connected  with  it,  is  called  a  compound  pendulum. 

Suppose  the  figure  to  represent  a  compound  pendulum.  Let 
G  be  its  Centre  of  Gravity,  and  take  the  plane  of  the  figure,  or 

the  plane  of  the  paper,  to  be  the  vertical  plane  passing  through  G. 
Let   the   axis  about   which   the   pendulum   oscillates  be    a 
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horizontal  axis  at  S.     This  axis  may  be  supposed  to  be  at  right 
angles  to  the  plane  of  the  figure. 

Then,  when  the  pendulum  is  at  rest,  SG  is  a  vertical  straight 
line. 

The  point  S  which  is  in  the  axis,  and  vertically  above  the  C.G. 
of   the  pendulum  when  the  pendulum  is  at  rest,  is 
called  the  Centre  of  Suspension  of  the  pendulum. 

The  pendulum  will  oscillate  in  the  same  time  as  a 

theoretical  simple  pendulum  of  a  certain  length. 

Such  a  simple  pendulum  is  called  the  simple  equiva- 
lent pendulum  of  the  given  compound  pendulum. 

Let  SG  be  produced  vertically  downwards  to  the 

point  0,  so  that  SO  is  equal  to  the  length  of  the 

equivalent  simple  pendulum,  or  so  that  a  particle 
suspended  at  0  by  a  weightless  perfectly  flexible 
string  SO^  would  oscillate  in  the  same  time  as  the 

G 

given  compound  pendulum.  Fio.  157.— 

Then  the  point  0  is  called  the  Centre  of  Oscillation  ̂ S^^^Sj 
of  the  given  pendulum. 

Suppose  the  pendulum  to  be  provided  with  an  axis  at  0 
parallel  to  the  axis  at  S.  Let  it  be  turned  upside  down  and  set 

to  oscillate  about  0.  Then  the  theory  of  the  compound  pen- 
dulum shows  that  it  will  oscillate  in  just  the  same  time  as  it 

does  about  the  axis  at  S.  That  is,  when  the  old  centre  of 

oscillation  is  made  the  centre  of  suspension,  the  old  centre  of 
suspension  becomes  the  centre  of  oscillation.  In  other  words, 
the  centres  of  suspension  and  oscillation  are  convertible. 

It  must  be  noticed  that  in  this  the  two  axes  S  and  0  must  be 

parallel  to  each  other. 

Suppose  that  for  a  compound  pendulum  positions  for  the  axes 
at  S  and  0  have  been  found  by  trial,  which  make  the  times  of 

oscillation  about  them  exactly  equal.  Let  the  distance  SO  be 
accurately  measured,  and  be  I.  Let  the  time  of  oscillation  about 

either  axis  be  T.  Then  SO  is  the  length  of  the  simple  equiva- 
lent pendulum  of  the  compound  pendulum  for  oscillation  about 

either  S  or  0.  Thus  T  is  the  time  of  oscillation  of  a  simple 
pendulum  of  length  I.     And  we  have  the  relation 

^9 
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This  experiment  affords  the  best  method  known  of  determin- 
ing the  value  of  g. 

Precautions  in  an  Accurate  Experiment.— Further  refine- 
ments are  introduced  into  the  experiment  in  practice.  The 

resistance  of  the  air  affects  the  time  of  the  oscillation  by 

opposing  the  motion,  and  the  upward  buoyancy  of  the  air  on 
the  pendulum  also  affects  the  time.  These  sources  of  error  are 

avoided  by  causing  the  pendulum  to  oscillate  in  a  vacuum. 
The  time  of  an  oscillation,  even  if  the  oscillation  is  small,  is 

not  quite  the  same  as  if  it  were  infinitesimally  small,  that  is,  it 
depends  on  the  size  of  the  oscillation  to  some  extent.  The  size 
of  the  oscillation  is  therefore  taken  into  account  in  accurate 

experiments. 

In  order  to  avoid  friction  at  the  axis  as  far  as  possible,  and,  at 
the  same  time,  to  have  a  definite  mathematical  straight  line 
about  which  the  oscillation  is  taking  place,  each  axis  is  made  of 

the  form  known  as  a  knife-edge ;  that  is,  the  axis  is  of  the  shape 

of  a  prism  with  a  triangular  cross-section,  as  shown  in  the  figure, 
the  lowest  edge  resting  on  two  hard  horizontal  planes,  one  on 

each  side  of  the  pendulum,  when  the  oscillation  is  about  that 
axis. 

Numerous  determinations  of  the  value  of  g  have  been  made 

with  a  compound  pendulum  by  Captain  Kater  ;  and  the  pendu- 

lum, designed  for  use  in  this  manner,  is  frequently  called  Eater's 
pendulum. 

Effect  of  Earth's  Rotation  and  Shape. — It  should  be 
noticed  that  even  when  a  body  is  at  rest  on  the  surface  of  the 

earth,  that  is,  not  moving  relatively  to  the  earth,  it  has  an 

acceleration  towards  the  earth's  centre  in  consequence  of  the 
earth's  rotation. 

Now  if  a  body  is  falling  freely,  that  is,  moving  under  the  action 
of  its  own  weight,  or  the  attraction  of  the  earth  on  it,  it  has  an 
entire  resultant  acceleration,  which  is  made  up  of  two : 

(i)  Its  apparent  acceleration  or  the  acceleration  which  it  seems 
to  have  on  the  supposition  that  the  earth  is  at  rest ; 

(ii)  An  acceleration  due  to  the  eaith's  rotation,  that  is,  the 
acceleration  that  it  would  have  if  not  moving  with  respect  to 
the  earth. 

In  experiments  with  Attwood's  machine,  or  a  pendulum,  it  is 
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the  apparent  acceleration  that  is  found.  If  we  compound  with 

this  the  acceleration  which  the  body  is  known  to  possess  in  con- 

sequence of  the  earth's  rotation  we  get  the  true  acceleration. 
Again  the  true  weight  of  a  body  is  the  earth's  attraction  on  it. 

But  this  is  slightly  different  from  what  may  be  called,  in  this 
connexion,  the  apparent  weight,  which  is  the  force  that  would  be 
necessary  to  produce  the  apparent  acceleration  in  it. 

The  apparent  acceleration  differs  from  the  true  acceleration,  as 

a  rule,  both  in  direction  and  magnitude.  The  differences  are  only 

very  slight.  The  same  applies  to  the  apparent  and  true  weights. 
They  may,  in  general,  be  taken  to  be  the  same.  The  difference 

between  them  is  greatest  at  the  equator,  where  it  is  about  090^  of 
either,  and  where  they  coincide  in  direction.  To  be  precise, 

however,  it  should  be  remembered  that  g  is  the  apparent  accelera- 
tion due  to  gravity. 

Thus  g  varies  from  point  to  point  of  the  earth's  surface  in  con- 
sequence of  the  earth's  rotation.  But  there  is  another  reason  for 

the  variation  of  g. 
The  actual  force  of  attraction  which  the  earth  exerts  on  a 

body  on  various  parts  of  its  surface  varies,  because  of  the  shape 
of  the  earth,  which  is  not  truly  spherical.  The  earth  is  flatter  at 

the  poles  than  at  the  equator ;  it  bulges  slightly  at  the  equator. 

Consequently  a  body  moved  along  its  surface  from  the  equator 

towards  a  pole  gradually  becomes  slightly  nearer  to  the  earth's 
centre,  and,  in  consequence,  the  earth's  attraction  on  it  slightly 
increases. 

For  both  these  reasons  the  value  of  g  (or  the  weight  of  a 

given  body)  is  least  at  the  equator,  and  gradually  increases 
towards  the  poles,  where  it  is  greatest. 

Values  of  g  in  different  localities  on  the  eartlCs  surface. 
In  feet  and  seconds.     In  centimetres  and  seconds. 

At  equator,      -         -     32-09  978-1 

In  latitude  45°,        -     32-17  980-6 
At  pole,  -         -         -     32-25  983-1 

Variation  in  Weight  of  a  Body.— The  weight  of  a  body  also 
depends  to  a  slight  extent  on  its  elevation.  If  it  is  carried  up  a 

mountain  it  is  carried  further  away  from  the  earth's  centre,  and 
its  weight  falls  off.     If  the  body  is  carried  down  into  a  mine, 



314  ELEMENTARY  MECHANICS  OF  SOLIDS. 

then,  although  it  is  carried  nearer  to  the  earth's  centre,  some 

parts  of  the  earth's  substance  attract  it  upwards,  and  its  weight 
falls  off.  So  that  the  weight  is  greater  at  the  surface  than 
either  above  or  below  it. 

Thus,  on  the  whole,  the  weight  of  a  body  depends  on  latitude 
and  altitihde. 

When  a  body  is  weighed  in  a  balance,  or  with  a  weighing 
machine  or  steelyard,  in  order  to  determine  its  mass,  the  same 

result  will  be  obtained  no  matter  in  what  locality  the  weighing 
is  done.  For,  although  the  weight  of  the  body  varies,  the 

weight  of  the  weights  used  varies  in  exactly  the  same  manner  : 

so  that  if  certain  weights  balance  the  body  in  one  locality  they 
will  do  so  in  any  other  locality. 

If,  however,  the  body  is  weighed  by  means  of  a  spring-balance, 
or  any  such  instrument,  in  which  the  indication  is  given  by  the 

deformation  produced  in  a  spring  or  other  body  by  means  of  the 
force  acting  on  it,  then  this  indication  will  depend  on  the  actual 

weight  of  the  body  in  the  given  locality,  and  will,  therefore,  vary 
to  some  extent  with  the  locality. 

Thus,  when  a  spring-balance  is  used,  a  body  will  appear  to 
weigh  more  at  the  poles  than  at  the  equator,  and  will  appear  to 
weigh  more  at  the  surface  of  the  earth  than  when  carried  up  a 
mountain  or  down  a  mine. 

Thus  if,  for  example,  a  spring-balance  is  correctly  graduated 
for  use  in  London,  a  body  weighed  with  it  at  the  equator  will 

appear  to  weigh  too  little,  and  a  body  weighed  with  it  at  the 
pole  will  appear  to  weigh  too  much. 

Since  the  extreme  variation  of  the  weight  of  a  body  at  various 

parts  of  the  earth's  surface  is  nearly  as  much  as  '2  in  32,  it  follows 
that  the  mass  of  a  body  as  estimated  by  means  of  a  spring- 
balance  may  vary  by  nearly  as  much  as  ̂ ^  of  an  ounce  per 

pound. 

Seconds'  Pendulum. — A  second^  pendidum  for  a  given 
locality  means  a  pendulum  which  will  make  one  beat,  or  half  of 

a  complete  oscillation,  in  each  second,  when  making  very  small 
oscillations. 

The  length  of  the  seconds'  pendulum  is  the  length  of  the 
theoretical  simple  pendulum  which  makes  one  beat  per  second, 
when  making  very  small  oscillations. 
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Since  the  time  of  a  complete  small  oscillation  is  given  by  the 
formula 

it  follows  that  if  I  is  the  length  of  the  seconds'  pendulum  at  a 
place  where  the  apparent  acceleration  due  to  gravity  is  g^ 

■IT 

4- 
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Thus,  the  length  of  the  seconds'  pendulum  varies  from  point 

to  point  of  the  earth's  surface,  and  is  directly  proportional  to  g. 
Again,  it  follows  from  the  formula  for  the  time  of  a  complete 

oscillation  that  the  length  of  the  pendulum  which  oscillates  in 

any  given  time  must  be  proportional  to  the  value  of  g  at  the 
locality  in  which  it  is.  Thus,  if  a  clock  is  regulated  to  keep 
correct  time  in  a  given  locality,  it  will  not,  as  a  rule,  do  so  in 

another  locality,  but  to  regulate  it  the  length  of  its  pendulum 
must  be  altered. 

Experiment  44. — Make  a  simple  pendulum  by  attaching  a  small 
weight  to  the  end  of  a  fine  string  :  a  leaden  bullet  of  about  half  an 
inch  diameter  with  a  hook  driven  into  it  for  the  string  will  do  very 
well.  Fix  a  long  nail  in  the  wall  so  that  it  projects  a  couple  of 
inches.  Hang  the  pendulum  to  this  nail  so  that  the  bob  swings 
quite  clear  of  the  wall ;  and  make  a  vertical  mark  on  the  wall 
behind  the  position  of  the  bob  and  string  when  they  are  at  rest. 

Make  the  string  about  1  metre  long  :  measure  the  length  from  the 
point  of  suspension  at  the  nail  to  the  middle  of  the  bob,  and  take 
this  for  the  length  of  the  pendulum. 

Set  the  pendulum  swinging  by  drawing  the  bob  aside  about  2 
inches  and  then  releasing  it,  taking  care  that  it  swings  in  a  vertical 
plane  and  has  nothing  like  a  circular  motion.  Count  the  time  of  a 
complete  oscillation  as  the  time  between  an  instant  when  the 
pendulum  crosses  the  vertical  mark  moving  from  left  to  right  to  the 
next  instant  when  it  crosses  the  mark  moving  the  same  way. 
Observe  the  time  taken  to  make  a  considerable  number  of  oscilla- 

tions, say  about  20,  and  thus  calculate  the  time  of  one  oscillation. 

Take  various  lengths  for  the  pendulum,  say  50,  60,  80,  100  centi- 
metres. Determine  the  time  of  an  oscillation  as  before.  Draw  up 

a  table  of  the  squares  of  the  times.  These  should  be  proportional 
to  the  lengths  ;  or  when  divided  by  the  lengths  should  give  the 
same  number. 
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Determine  the  value  of  g  in  centimetres  and  seconds  by  means 
of  the  equation 

from  which  g  =  ̂ y^. 

The  same  experiment  may,  of  course,  be  done  using  feet  to 
measure  the  lengths  instead  of  centimetres,  and  the  result  will 
be  in  feet  and  seconds. 

Or,  if  the  value  of  g  is  found  in  one  measure,  it  can  easily  be 

converted  into  the  other.  For  since  a  foot  is  30'48  cms.,  an 
acceleration  of  1  foot  per  second  per  second  is  an  acceleration  of 

30*48  cms.  per  second  per  second,  and  to  convert  from  British  to 

metric  units  we  have  only  to  multiply  by  30"48,  and  to  convert 
from  metric  to  British  units  to  divide  by  the  same  number. 

Example. — Find  the  length  of  the  pendulum  which  will 
make  24  oscillations  in  a  minute. 

Let  the  length  be  I  feet. 

The  time  of  an  oscillation  ff  secs.  =  |  sees. 

By  formula  T=27rJL 

jgT^_S2  .  25  .  49 
47r2~  4.4.484 

=  5-1^ 
^242* 

The  required  length  is  62^  feet. 

Example. — A  pendulum  beats  seconds.     If  it  is  lengthened 
by  Y^  inch  show  that  in  one  day  it   will  lose  about 
11*2  beats. 

Let  I  feet  be  the  original  length. 

Then  l  =  7rJL 

When  the  pendulum  is  lengthened  the  time  of  a  beat  is 

Ij.    1  Ig  ,    1         _____ 
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-^Jl+       '^ 
49.  1200.32 

=  v/r00026 

=  1-00013  nearly. 
Number  of  seconds  in  one  day  is 

3600x24  =  86400. 

.*.   number  of  beats  made  in  one  day  is 

^^^  =  86388-8  about. 
.'.   number  of  beats  lost  in  a  day  =  11 '2  about. 

Exercises  XX. 

1.  If  the  length  of  the  seconds'  pendulum  is  89*14  inches,  what  is 
the  length  of  the  pendulum  that  will  make  a  complete  oscillation  in 
one  second  ? 

2.  If  a  pendulum  is  taken  from  a  place  whose  latitude  is  45°  to 
the  pole,  show  that  in  order  that  it  may  oscillate  in  the  same  time 

as  before  it  must  be  lengthened  by  about  j^q"  ̂^  ̂ ^^  original  length. 
3.  Show  that  the  ratio  of  the  times  of  oscillation  of  a  pendulum 

at  the  equator  and  at  the  pole  is  about  401  :  400. 
4.  If  a  clock  is  regulated  to  keep  correct  time  at  the  equator,  find 

how  much  it  will  gain  in  a  day  at  the  pole. 

5.  What  will  a  hundredweight  appear  to  weigh  at  the  equator  if 
weighed  with  a  spring  balance  which  is  graduated  for  use  in 

London,  the  values  of  g  at  the  equator  and  in  London  being  32*09 
and  32-19? 

6.  If  a  London  spring-balance  is  used  at  the  pole,  show  that  the 
indications  must  be  corrected  by  subtracting  ̂ 4  3  per  cent. 

7.  When  the  time  of  oscillation  of  a  simple  pendulum  is  given  by 

the  formula  2'rr\  -, 

what  is  the  meaning  of  the  word  "  oscillation  "? 
Define  a  compound  pendulum.  If  such  a  pendulum  makes  25 

oscillations  in  a  minute,  what  is  the  distance  from  the  centre  of 
suspension  to  the  centre  of  oscillation?     (Science  and  Art,  1898.) 

8.  Define  a  simple  pendulum  and  an  oscillation  of  a  pendulum. 
The  formula  for  the  time  of  a  small  oscillation  being 

state  exactly  what  is  meant  by  tt,  I,  and  g. 

What  is  a  seconds'  pendulum  ?  If  we  could  have  a  simple  pen- 
dulum in  a  place  where  g  =  ZO  in  feet  and  seconds,  what  would  be 

the  length  of  a  seconds'  pendulum?    (Science  and  Art,  1897.) 
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Summary. 

A  simple  pendulum  is  a  small  heavy  body  suspended  at  the  end 
of  a  light  string. 
An  oscillation  of  a  pendulum  means  the  motion  from  one  end  of 

its  path  to  the  other  and  back  again. 

Simple  Harmonic  Motion. — If  a  point  P  moves  with  uniform  speed 
round  the  circumference  of  a  circle,  and  Q  is  the  foot  of  the  perpen- 

dicular from  P  on  a  fixed  diameter  of  the  circle,  the  motion  of  Q 
along  this  diameter  is  called  Simple  Harmonic  Motion,  or  S.H.M. 

In  S.H.M.  the  moving  point  has  at  any  instant  an  acceleration 
directed  to  its  mean  position,  and  proportional  to  its  distance  from 
this  position. 

Conversely,  if  a  point  moves  in  a  straight  line,  and  has  at  each 
instant  an  acceleration  proportional  to  its  distance  from  a  fixed 
point  in  the  line,  and  towards  this  point,  it  moves  with  S.H.M. 

If  the  acceleration  is  ̂   x  displacement  from  mean  position,  the 
period  of  the  motion  is  2ir/\/k. 

If  a  simple  pendulum  of  length  I  makes  small  oscillations,  the 
period  or  time  of  a  complete  to-and-fro  swing  is 

The  value  of  g  can  be  found  with  considerable  accuracy  by  finding 
the  time  of  oscillation  of  a  simple  pendulum  of  known  length. 

Compound  Pendulum. — This  is  a  rigid  body,  generally  a  bar, 
which  can  oscillate  about  a  horizontal  axis. 

The  centre  of  suspension  is  the  point  of  this  axis  that  is  vertically 
above  the  equilibrium  position  of  the  C.G.  of  the  pendulum. 

The  centre  of  oscillation  is  the  point  in  the  pendulum  vertically 
below  the  C.G.  when  the  pendulum  is  at  rest,  and  at  a  distance  from 
the  centre  of  suspension  equal  to  the  length  of  a  theoretical  simple 
pendulum  that  will  oscillate  in  the  same  time. 

This  simple  pendulum  is  called  the  equivalent  simple  pendulum 
for  the  given  compound  pendulum. 

The  centres  of  suspension  and  oscillation  are  convertible. 
If  I  is  the  distance  between  the  centres  S  and  O,  and  T  is  the 

time  of  oscillation  about  either,  then  T  is  period  for  simple  pendulum 
of  length  I. 

.'.    T=2Tr\II. 

Mg 

This  gives  the  best  known  method  of  finding  g. 

The  compound  pendulum  used  to  determine  g  is  called  Kater's 
pendulum. 

The  value  of  g,  the  apparent  acceleration  of  a  freely  falling  body 
(as  well  as  the  weight  of  a  given  body),  depends  to  a  slight  extent 
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on  the  rotation  and  on  the  shape  of  the  earth.  It  is  least  at  the 
equator  and  greatest  at  the  poles. 

q  also  depends  on  the  height  above  or  depth  below  the  earth's 
surface,  being  greatest  in  a  given  locality  at  the  earth's  surface. 

If  a  body  is  weighed  with  a  balance,  or  such  apparatus,  against 
standard  weights,  the  result  is  independent  of  the  locality,  because 
weights  of  body  and  of  weights  vary  in  the  same  ratio  from  one 
locality  to  another.  But  if  a  body  is  weighed  with  a  spring  balance, 
the  indication,  depending  on  the  weight  of  the  body,  varies  with 
the  locality  to  a  slight  extent. 

A  seconds'  pendulum  is  one  which  makes  one  beat,  or  one  half 
oscillation,  in  a  second.  Its  length  depends  on  the  locality,  and  is 
given  by  the  equation  TrH  =  g. 



EXAMINATION   PAPERS. 

BOARD  OF  EDUCATION,  SOUTH  KENSINGTON  (1900). 

Theoretical  Mechanics :   Solids. 

(You  are  not  permitted  to  answer  more  than  seven  questions.) 

1.  Given  1  metre  =  39 -37079  in.  and  1  kilogramme  =  2 -20462  lbs., 
express  a  force  of  1-033  kgs.  per  square  centimetre  in  pounds  per 
square  inch.  (10) 

2.  How  many  things  are  involved  in  the  specification  of  a  force  ? 
Forces,  17  and  19  lbs.  respectively,  act  at  a  point  and  the  angle 

between  them  is  60°;  construct  on  a  scale  of  1  lb.  to  1^-inch  the 
parallelogram  of  forces  and  determine  as  accurately  as  possible 
the  magnitude  of  the  resultant  force  and  the  angle  its  direction 
makes  with  that  of  the  force  of  19  lbs.  (13) 

3.  Draw  a  small  circle  (C)  and  let  it  represent  a  wheel  fixed 
immoveably,  with  its  plane  vertical  ;  suppose  a  thread  to  pass  over 
the  edge  of  the  wheel;  if  there  is  no  friction,  and  one  end  (A)  of  the 
thread  carries  a  weight  W,  while  the  other  end  ( B)  is  fastened  to  a 
hook  in  the  floor  vertically  under  C,  what  is  the  magnitude  of  the 
pull  on  the  hook  ?  If  the  hook  were  driven  into  a  wall,  so  that  CB 
is  now  horizontal,  explain  whether  this  makes  any  change  in  the  pull 
on  the  hook. 

Find,  in  each  case,  the  pressure  on  the  wheel.  (12) 

4.  A  rod  AB  rests  horizontally  on  two  points  one  under  each  end; 
its  length  is  divided  into  three  equal  parts  at  points  G  and  D  ;  if 
weights  of  12  lbs.  and  18  lbs.  are  hung  from  C  and  D,  find  the  pres- 

sure on  A  and  on  B,  (a)  neglecting  the  weight  of  the  rod,  (6)  taking 
account  of  the  fact  that  the  rod  is  of  uniform  density  and  weighs 
6  lbs.  (12) 

5.  Define  the  centre  of  gravity  of  a  body. 

State  what  is  the  position  of  the  centre  of  gravity  :— (a)  of  a 
square  lamina,  (6)  of  a  cylinder,  (c)  of  a  triangular  lamina,  {d)  of  a 
cone.     In  each  case  the  body  is  of  uniform  density.  (10) 
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6.  Define  the  axis  of  a  couple. 

I  attempt  to  turn  the  cork  in  a  vertical  bottle  by  a  couple  whose 
axis  is  vertical.  If  the  force  of  the  couple  be  10  lbs.  and  its  moment 

equal  to  7 '5  numerically,  a  foot  being  taken  as  the  unit  of  length, 
find  the  arm  of  the  couple  in  inches.  If  the  length  of  the  arm  he 
increased  10  per  cent.,  find  by  how  much  per  cent,  the  force  must  be 
diminished  so  as  to  leave  the  moment  unchanged.  (15) 

7.  A  board  in  shape  an  isosceles  triangle  has  the  base,  which  is 
lower  than  the  vertex,  fixed  horizontally,  and  is  moveable  about  the 
base  as  about  a  smooth  hinge  ;  it  is  kept  in  equilibrium  by  a  string 
connecting  the  vertex  with  a  fixed  point,  which  is  in  the  same 
vertical  plane  as  the  perpendicular  from  the  vertex  to  the  base. 
Construct  a  triangle  of  forces  for  the  equilibrium,  and  show  how  to 
determine  the  reacting  force  of  the  hinge  in  magnitude  and  direc- 

tion. (14) 

8.  Three  million  gallons  of  water  flow  daily  over  a  fall,  the  height 
of  which  is  18  ft.;  assuming  that  yuths  of  the  power  is  wasted,  what 
is  the  horse-power  of  a  wheel  worked  by  the  fall?  (A  gallon  of 
water  weighs  10  lbs. ) 

A  man  being  asked  what  is  meant  by  a  Horse-power,  said  that  it 
meant  33,000  foot-pounds  of  work.  State  in  what  way  the  answer 
was  wi'ong.  (16) 

9.  Write  down  the  usual  formulae  of  uniformly  accelerated  motion, 
and  from  them  deduce  a  formula  which  does  not  involve  the  initial 
v^elocity. 

A  ball  is  thrown  vertically  upwards  and  in  3*125  seconds  strikes  a 
horizontal  board  with  a  velocity  of  5  "5  feet  per  second  ;  neglecting 
the  resistance  of  the  air,  find  the  height  of  the  board.  (14) 

10.  Two  bodies,  whose  masses  are  9  lbs.  and  11  lbs.,  are  connected 
by  a  fine  thread,  which  passes  over  a  perfectly  smooth  fixed  wheel ; 
find  the  increase  of  the  velocity  of  either  body  in  each  second  of  the 
motion.  Find  the  height  through  which  the  lighter  body  rises  in 
the  first  three  seconds  of  the  motion.  (12) 

11.  A  body  of  mass  m  acquires  a  velocity  v,  when  acted  on  (in  the 

direction  of  the  motion)  by  a  force  /'  through  a  space  s.  What  is 
the  equation  of  the  work  and  energy  ?  (10) 

12.  State  what  is  meant  by  the  centrifugal  force  of  a  body  moving 
in  a  circle. 

Write  down  the  formula  for  the  centrifugal  force,  when  the  mass 
of  the  body  is  m,  its  velocity  v,  and  the  radius  of  the  circle  r,  and 
state  what  units  must  be  used  if  the  formula  is  to  give  the  force 
in  poundals. 

The  radius  of  the  circle  being  10  ft.,  find  the  velocity,  when  the 
centrifugal  force  of  the  body  equals  its  weight,  (16) 
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UNIVERSITY   OF   LONDON. 

Matriculation   (June,   1900). 

.  Mechanics. 
1.  Explain  how  a  screw  is  a  particular  case  of  an  inclined  plane. 

Apply  the  principle  of  work  to  determine  the  force  'that  will  be 
exerted  by  a  screw  of  pitch,  p,  when  a  moment,  m,  is  applied  to 
turn  it. 

2.  A  sailor  is  running  across  the  deck  of  a  ship  which  is  heeling 

over  at  an  angle  of  30°.  If  he  run  in  a  direction  perpendicular  to 
the  length  of  the  ship  at  the  rate  of  5  yards  per  second  and  the  ship 
be  moving  forward  through  the  water  at  the  rate  of  8  miles  an  hour, 
how  fast  is  the  sailor  moving  with  reference  to  the  body  of  the 
water  ? 

3.  Suppose  a  force  to  act  upon  a  body  which  is  free  to  move  only 
along  a  given  straight  line.  How  would  you  ascertain  {a)  by  ex- 

periment, and  (b)  by  geometry,  how  miich  of  that  force  is  effective 
towards  producing  motion  along  that  line  ?  Illustrate  your  answer 
by  reference  to  a  case  in  which  the  angle  between  the  direction  of  the 
force  and  that  of  the  line  is  equal  to  7r/6  radians. 

4.  A  man  is  pulling  a  boat  by  means  of  a  rope.  The  boat  weighs 
200  lbs.,  and  is  resisted  by  the  water  with  a  force  of  10  lbs.  The 
rope  is  40  feet  long,  and  each  foot  weighs  1  lb.  Calculate  the  force 
the  man  must  exert  (a)  if  the  boat  be  moving  uniformly,  (b)  if  it  be 
accelerated  at  the  rate  of  2  feet  per  second  per  second.  In  each 
case  what  is  the  difference  between  the  force  with  which  the  man 
pulls  the  rope  and  that  with  which  the  rope  pulls  the  boat  ? 

5.  By  what  experiments  would  you  prove  that  the  work  that  can 
be  done  by  a  moving  body  is  proportional  to  {a)  its  mass,  (6)  the 
square  of  its  velocity. 

6.  Define  density.  You  are  given  some  water,  some  turpentine, 
a  piece  of  glass  tube,  a  spirit  lamp,  and  a  foot  rule,  and  are  required 
to  find  the  density  of  the  turpentine  ;  how  would  you  do  this  ? 

7.  When  a  body  is  partially  immersed  in  water,  through  what 
point  does  the  resultant  upward  thrust  of  the  water  act  ?  As  the 
body  is  turned  about  in  the  water,  does  this  point  always  stay  the 
same?  Apply  this  to  show  that  a  uniform  straight  rod  floating 
vertically  in  water  is  in  a  position  of  equilibrium. 



ANSWERS. 

Exercises  I.  a. 

1.  74  units  inclined  at  62°  and  72°  to  given  forces. 
2.  14*7  lbs.'  wt.  inclined  at  22°  and  44°  to  given  forces. 
3.  20  units  inclined  at  60°  and  30°  to  given  forces. 

Exercises  I.  b. 

1.  36 "S  tons'  wt.  at  55°  and  71°  with  given  forces. 

2.  40  at  30°  and  120°  with  given  forces. 

Exercises  I.  c. 

1.    14-1  and  10  lbs.'  wt.  2.  20-8  and  41  "6  lbs.'  wt. 

3.  8*6  grams'  wt.  4.  20  3  grams'  wt. 

Exercises  II. 

3.  208  lbs.'  wt.  nearly.  4.   104  and  60  lbs.'  wt. 
7.  306  and  216  lbs.'  wt.  10.  6*9  lbs.'  wt.,  at  30°  to  the  vertical. 

11.  .30-35  and  .30  lbs.'  wt.  12.  173-2  lbs.;  100  lbs.'  wt. 
16.  28-86  and  16-03  lbs.'  wt.  17.   ij  lbs.'  wt. 

18.  157°,  90°,  and  113°. 

19.  22  units  ;  39°  ;  in  direction  opposite  to  resultant. 

20.  25  lbs.  21.   12  and  10.         22.   (1)  ̂ ^ ;   (2)  0. 

23.  7  lbs.'  wt.;  3^2  lbs.'  wt.  25.  \^%  lbs.'  wt.;  %sj~6  lbs.'  wt. 
Exercises  III.  a. 

1.  7  lbs.  2.   1  lb.  3.   ly^  inches  from  0  on  first  side. 

Exercises  III.  b. 

1.  5  lbs.'  wt.  in  sense  of  forces  acting  at  C;  .4(7=6  ft.,  Cfi  =  4  ft. 
2.  17  units  in  sense  of  forces  at  C;  .4C=2xy,  CB  =  2^^. 

323 
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3.  3  units  in  sense  of  the  10  at  C;  J.C=16f,  C^  =  ll|. 

4.  8  ozs.'  wt.  in  sense  of  the  25  at  C;  AC'=S^  ins.,  CB=\2^  ins. 
5.  25  tons'  wt.  in  sense  of  75  ;  AC  =12  ins.,  BC=16  ins. 
6.  2P  in  sense  of  3P  ;  ̂(7=  6a,  5(7=  10a. 

7.  41    units    in    sense    opposite  to  given  forces;    AC^Sfj   ins., 
5(7=  if  ins. 

8.  19  ozs.'  wt.  opposite  to  given  forces  ;  AC=2  ft.  9  ins.,  BC=2  ft. 
9.  A  force  of  3  units   in  direction  of  7,  on  other  side  of  10,  at 

distance  2  ft.  4  ins. 

10.  43y  ins.  11.  4a. 

12.   X=^^;    Y=^^.  13.   X=^^;   Y=^^. 
x  +  y  x  +  y  x-y  x-y 

14.  4^  ins.  and  7^  ins.  from  P  and  Q  respectively. 
16.  1  ft.  4  ins.  and  2  ft.  4  ins.  from  P  and  Q  respectively. 

Exercises  IV. 

1.  15x\  ins.  from  the  4  lb.  wt.;  Sjj  ins.  from  the  7  lb.  wt. 

2.  3840  lbs.'  wt.  3.  8|  lbs.'  wt. 
5.   12  ft.  6  ins.  from  A  ;  7'8  ozs.'  wt. 

6  Back  wheel,  lOOjV  l^s.'  wt. ;  front  wheel,  53yo  lbs.'  wt. 
7.  20tt  lbs.'  wt.  8.  4t  ins. 
9.  50  lbs.'  wt.;  35  lbs.'  wt.  10.    -1  lb.  wt.  about. 

11.  48  units.  14.   The  string  at  B  ;  9tV  lbs.'  wt. 
16.  Perpendicular  distances  between  axis  and  directions  of  forces  are 

in  ratio  of  4  to  5. 

17.  225  lbs.'  wt. 

Exercises  V.  a. 

1.  2^^  ins.  from  the  4  oz.  2.  ̂   lb. 
3.  11  inches  from  the  end  mentioned.  4.  Sf  ft. 

5.  28  lbs.  6.  2-16  metres.  7.   186  2ir  cm. 
8.  Length  =  13  ft.;  C.G.  5  feet  from  A.  9.  8,  6*4,  6*4  ins. 

12.  3,  sJlO,  s/TO.       13.   At  the  junction  of  the  rods. 
15.  In  the  line  of  centres,  2  ins.  from  the  centre  of  the  largest  disc. 
16.  9t¥9  units. 

Exercises  V.  b. 

1.  ̂ 3"  cub.  ft.  2.  6  kilograms. 
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Exercises  VI.  a. 

1.  tV  -45  and  ̂   AB.  2.  In  angle  COD  ;  each  distance  is  ̂. 

3.  Let  0  be  the  centre  and  A  the  angular  point  omitted  ;  C.G.  is 

on  ̂ 0  produced  at  distance  from  0  =  ̂ A0. 
4.  At  G  in  BC,  so  that  BG=  l^f . 
6.  1  sV  iiis-  from  centre  of  middle  sphere  towards  centre  of  that  of 

radius  6  ins. 

8.   In  the  median  AD  oi  the  triangle  ABC  a,t  distance  from  A  ec^ual 

to2^^!±^iiii)^i). Zn{n+1) 

Exercises  VI.  b. 

1.  76  and  6|  lbs.' wt.  3.  2 '65  ins.  6.  44  and  38  ozs.' wt. 
7.  3  ft.  from  cord  whose  tension  is  double  that  of  the  other. 

8.  2jft. 
9.  Let  a  be  side  of  square  ;  then  C.G.  is  at  a  point  in  the  straight 

line  drawn  through  the  middle  point  of  the  hypotenuse  and  at 

right  angles  to  it,  at  a  distance  — ^  from  hypotenuse. 

10.  At  a  point  G  in  the  straight  line  joining  the  middle  points  A,  B, 
of  the  arms,  so  that  AG  =  ̂ GB. 

11.  10-4  ft.  nearly. 
12.  4f  cms.  and  2^  cms.  from  sides  (1,  10),  (1,  2)  respectively. 
13.  if  ft.  from  end  on  which  weight  is  placed. 
14.  Divide  AB  at  D  so  that  AD  =  2DB;    then  C.G.  is  at  middle 

point  of  CD. 

15.  3v^2  1bs.'  wt. 
16.  At  distances  8  ins.  and  6  ins.  from  sides  (1,  1),  (1,  2)  respectively. 

17.  In  line  joining  centres  of  disc  and  hole,  ij^  ins.  from  centre  of 
disc. 

18.  6\/3  stones'  wt.  and  30  stones'  wt. 

19.  i^ths  of  diagonal  through  5.  20.   fy^VIIO  lbs.'  wt. 
21.  ̂ rd  of  distance  between  middle  points  of  AB,  BC. 

Exercises  VII. 

1.  1842  lbs.'  wt.  2.  90,000  lbs.'  wt.  per  sq.  in. 

3.  268,800  lbs.'  wt.  per  sq.  in. 

Exercises  VIII.  a. 

1.  7,200  ft. -lbs.  ;  2mins.  IOtt  sees.  2.  4,200  ft. -lbs.  ;  -V 
3.   158,400  ft. -lbs.  4.  22,500  ft. -lbs.  6.  35  ft. -lbs,  per  sec. 
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7. 400,000  ft. -lbs. 8.   18-32. 
10. 22  niins.  44  sees. 

11. 454t\. 12.  224:275. 13. 

22^5"0- 

14. 
22,628Tft.-lbs. 

15.  58|!. 18. 200  H.P. 
19. 883-93. 20.  76  04. 

Exercises  VIII. b 

24. 
4ift.-lbs. 

1. 336  ft. -lbs. 2.   75,428^  ft. -lbs. 
3. 

9  ft. -lbs. 
4. 5320  ft. -lbs. 5.    192f. 

6. 
4,827f- 8. 36-29. 9.  2424-8  ft. -lbs. 10. •0052  ft. -lbs. 

11. 2140  ft. -lbs.  per min. 12. 20,160ft.-lbs.;^th 
13. 56. 14.   1400  ft. -lbs. 

Exercises  IX. a. 

1. 
13 ̂ V  lbs.'  wt. 2.  200  lbs.'  wt. 3. 

nil  lbs.'  wt. 
4. 10  0.        3 

TUS>    T0  3- 5.  35-  ozs. '  wt. 
6. 

125  lbs.'  wt. 
7.  yg-  BC  from  B ;  pressure  =  13 -89  units,  and  acts  at  an  angle  of 

86°  to  BC. 

Exercises  IX.  b. 

1.  60  and  80  lbs.'  wt.    2.  75  and  125  lbs.'  wt.    3.   12,000  ft. -lbs. 
4.  3-2yds.  6.    116-1  ft. -lbs.  7.    11-31  ft. 

8.  6336.  12.   (1)  2t;  (2)  A-        13.  0°. 
14.  7:24.  16.    -34  0111.  16.   30  1bs.'wt. 

"•  ̂ i^'  18.   106  lbs.' wt. 2/-  W 

19.  \/3  lbs. '  wt.  along  the  plane.         20.   y^^f . 
21.  70'7  lbs.'  wt.  along  the  plane. 

Exercises  X.  a. 

1.   7  lbs.'  wt.         2.  320  lbs.  3. 

5.  4;  160  lbs.       6.  37^  lbs.' wt.     7. 
8.   17|  lbs.'  wt.  ;  69 J  lbs.'  wt.         9. 

12.   107i^lbs.'wt.  15.  46|lbs.'wt.  16. 
19.  5x^2  lbs.'  wt.  20.  4.  21. 
24.   |.  25.  if.  26. 

Exercises 

1.  25  lbs.'  wt.       2.   10  ins. 

5.  20|f  ft.-I 
9.   1000  lbs. 

'      1.12. 
»•     12  5- 

1:64. 

4. 

5. 20  lbs.'  wt. 
28  grams. 11. 

6 J  lbs.' wt. 390  lbs. 17. 
1-200  lbs. 

4  lbs. 
22. 3  lbs. 21 

40- 

27. 10. 

X.  b. 
2  ft. 4. 452I  ft. -lbs 
2-31  metres. 

8. -95  ins. 
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Exercises  XI.  a. 

1.   17:16;  3lf.  4.  21:20. 
7.  2s.  8d.  8.  8:9. 

Exercises  XI.  b. 

1.  22  ins.  and  50  ins.  from  the  fulcrum.  2.  83  cms.;  2  cms. 

4.  2  lbs.  5.  6  lbs.  and  3  lbs.  6.  3^,  6,  and  8  ins. 
9.   14ff  lbs. 

Exercises  XII. 

2.  172V  sees.  3.    112  ft.  per  sec;  128  ft.  per  sec. 
4.    iVy  ft.  per  sec.  per  sec. 

Exercises  XIII.  a. 

1.  3^-  ft.  per  sec.  per  sec.  2.  -^  cm.  per  sec.  per  sec. 
3.  TjQ^o^  cm.  per  sec.  per  sec.  4.  -  ̂ V  ̂t.  per  sec.  per  sec. 
5.  i-g  ft.  per  sec.  per  sec.  6.  -  5000  ft.  per  sec.  per  sec. 
7.  -  X  5-  ft.  per  sec.  per  sec.  8.  560  ft.  per  sec.  per  sec. 
9.  4  sees.  11.  18  units. 

12.  72  ft.  per  sec.  per  sec.  13.  8 '49  ft.  per  sec. 
14.  50  ft.  per  sec.  15.    -  3  ft.  per  sec.  per  sec. ;  4  sees. 

16.  5  ft.  per  sec.  18.    1,712,500  ft.  per  sec.  per  sec;  ̂ 8^5 (j  sees. 
19.  200.  20.    -  ̂   ft.  per  sec.  per  sec. 
21.  12|^.  22.   7  sees. 
23.  1  ft.  per  sec.  per  sec.  24.    -  2,940,000  ft.  per  sec.  per  sec. 

Exercises  XIII.  b. 

1.  324  ft.                        3.  36  ft.  4.  3  sees. 

5.  20  ft.  per  sec.            6.  64  ft.  7.  24j  sees. 

8.  1-92  sees.                    9.  88  ft.  per  sec  10.  36^^  sees.;  22,500ft. 
11.  In  1^  sees.;  25  ft.  below  the  top.  12.  57. 
13.  1024  cms.  14.   In  1  sec;  144  ft.     15.   172  ft. 

16.  5  units.                      17.  22  ft.  per  sec.  18.   122^^  cms. 
19.  58  ft.;  58  ft.  per  sec  20.  225  ft.  below  B.     21.  28i  ft.  per  sec 

22.  7*84  sees.  23.  y|^  miles  per  min.  per  min. 
24.  ̂   ft.  per  sec  per  sec. ;  ̂  ft.  per  sec.  per  sec 

25.  22^  sees. ;  2-^^\  ft.  per  sec.  per  sec. 
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Exercises  XIV.  a. 

1.  -2V  ft. -sec.  unit.        2.  64y\^  poundals.         3.    -0328  grams. 
4.  30-48.  5.  4536.  6.  26-4552. 

7.   -0000723.  8.  2-54  grams. 

Exercises  XIV.  b. 

1.  37  mins.  20  sees.       2.   2800  dynes.  3.  5li  cms. 
4.  2  ft.  per  sec.  5.  2^  ft.  per  sec.  6.   12. 
7.  3  hrs.  28  mins.  20  sees.  3.  2  sees. 

Exercises  XV.  a. 

1.  lOf  units.  2.  4-905  kilos.  3.  ttV(7  ft. -sec.  unit. 
4.  125  lbs.' wt.  6.  jg- 

Exercises  XV.  b. 

1.  -9  cm.  per  sec.  per  sec;  1^  dynes. 
3.  lOf  ft.;  I  and  i  lb.  wt.  4.  |  lb.  wt.;  1^  sees. 

5.  25-9  sees.  6.  |  lb.  wt.  7.  2  lbs. 

8.  ̂ 599^  lb.  wt.  9.  6f  ft.  per  sec.  per  sec;  2f  lbs.'  wt. 
10.  4  ft.                            12.  2f  sees.  13.  9-8  grams' wt. 

14.  43xV  and.  46x3  grams'  wt.       15.  31^  ft.  per  sec.  per  sec. 

18,  I  ft.  per  sec.  per  sec;  4^  lbs.'  wt.  19.  3-95  sees. 

20.  2yt  ft.  per  sec.  per  sec.  down  the  plane  ;  Ijy  lbs.'  wt. 
21.  ̂ x  ft.  per  sec.  per  sec. ;  5^y  lbs. '  wt. 
22.  y^  ft.  per  sec.  per  sec;  112  lbs.'  wt. 

Exercises  XV.  c. 

1.   I3X  ozs.  2.   93-1  grams.  3.  2:1. 
4.  1:3.  6.   1  oz. ;  15^^  ozs.  6.   9-05  sees. 

7.  (i.)  120  poundals  ;  (ii.)  195  poundals.  9.  6133 J  lbs.'  wt. 
10.  2-8  lbs.'  wt.;  17-07  ft.  per  sec.  per  sec.      11.  8  lbs. 

12.  1-22  sees.  13.  8  ft.  per  sec.  per  sec;  11^  lbs.'  wt. 
14.  Ix  cms.  per  sec.  per  sec 

15.  -  tt!  5"  ft.  per  sec.  per  sec. ;  6f  f  lbs. '  wt. 
16.  2  ft.  per  sec.  17.  2  ft.  per  sec.  18.   1  -78  sees. 
19.  1600  units.  20.  3|^  ft.  per  sec.  per  sec. ;  44|^  ft. 
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Exercises  XVI.  a. 

1.  200  poundals.  2.  35  sees.  3.  7168  pounds. 

*•  TTiilT  sees.  5.   120  poundals  ;  6000  poundals. 
6.  At  3  ft.  per  sec.  opposite  to  direction  of  force, 

7.  21  lbs.' wt.  8.  20  ozs. '  wt. 

Exercises  XVI.  b. 

1.  30  units.  2.  3,000,000  C.G.S.  units.  3.   150  lbs.' wt. 
4.   12|  units.  5.   17^  units. 

Exercises  XVI.  c. 

1.  4y^  ft.  per  sec.  2.  1154  ft.  per  sec. 
3.  The  kilogram  mass  goes  on  moving  in  the  same  sense  as  before 

Avith  velocity  9 "75  metres  per  second;   250  C.G.S.  units  of 
momentum. 

4.  l-^  ft.  per  sec.  in  same  sense  as  before.  6.   q^q  sec. 

Exercises  XVII.  a. 

1.  (1)  2800,  87|-;  (2)  31250,  976x6  ;  (3)  4480,  140. 

2.  (1)  40,000,  40-77  ;  (2)  2,000,000,000,000,  2,039,000,000. 
3.  44,037.  4.  The  first  is  22-662  of  the  other. 
6.  f  inch.          7.   l|  inches.  8.    1210. 

Exercises  XVII.  b. 

1.  7^1bs.'wt.      2.  4  ft.  per  sec.      3.  995  metres.      4.  495  metres. 

Exercises  XVII.  c. 

1.  410|  lbs.'  wt.         2.  25  yds.  3.  34*93  ft.  per  sec.  (about). 
4.  81  -5  metres  (about).  5.   -0498. 

Exercises  XVIII.  a. 

2.  11-3  ft.  per  sec.  (about).       3.  17-5  ft. -lbs.;  -175  lbs.' wt. 
4.  4|ft.-lbs.   5.  36  17  ft.  tons.   6.  ly  ft.  per  sec.  7.  5jft.-lbs. 

8.  .30  ft.  per  sec.  per  sec.         9.  9  902  cms.  per  sec. 

Exercises  XVIII.  b. 

1.  222ty  foot-poundals  2.  2,400,000,000. 
3.  3915  ft.  per  sec.  4.  6^  ft.  per  sec;  7|t  inches. 
5.  16  ft.  7.  5j  ft.  per  sec;  1^  ft. 

10.   8  ft.  per  sec;  5  ft.  per  sec. 
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11.  6050  ft.-poundals  ;  6050  ft. -poundals. 

12.  7871  ft. -poundals;  224  ft. -poundals  ;  ifff  Ibs.'wt. 
13.  180,000  ft.-poundals;  1875  ft.  14.   16\^5  ft.  per  sec. 
15.  2xft.-lbs.  16.   30  ft.-poundals. 
17.  12,500  ft.-poundals  :  500  F.P.S.  units  ;  25  ft.  per  sec. 

18.  l|-  ft.-poundals  ;  2sJ ̂   ft.  per  sec. 

Exercises  XIX.  a. 
1.  25  ft.  per  sec. 

2.  In  a  direction  making  120°  with  that  in  which  the  carriage  is moving. 

3.  30".  6.    Fv  3  in  the  direction  of  the  bisector  of  the  angle. 

Exercises  XIX.  b. 

1.   120  ft.  2.  226-3  ft.  per  sec. 

Exercises  XIX.  c. 

1.  TsVoo-  3.   17-93.  4.  7-41  lbs.' wt.   5.  9t6  i"S. 

8.  26  cms.   per  sec.   per  sec.    (nearly)   at  an  angle  of  74°  to  the 
easterly  direction. 

9.  16  ft.  per  sec  11.  494  poundals  nearly. 

Exercises  XX. 

1.  9-785  ins.  4.  3  mins.  36  sees.  6.   Ill  lbs.  10'4  oz. 

7.  56  ins.  (about).  8.  36*47  ins. 

Examination  Papers. 

South  Kensington,  1900. 

1.  14-69  lbs.  persq.  in.     2.  31  lbs.;  28°.     3.    W',no',2W;  W\^2. 
4.  (a)  14  lbs.'  wt.;  16  lbs.'  wt.;  (6)  17  lbs.'  wt.;  19  lbs.'  wt. 

6.  9  ins.;  9tt  %•  8.  9p^  H.P.  9.   173j6  ft. 
10.  3^  ft.  per  sec.  per  sec.  ;  14-|  ft.  12.   Sv^'s  ft.  per  sec. 

London  Matriculation,  June,  1900. 

2.  17-50  ft.  per  sec. 

4.  (a)  10  lbs.'  wt. ;   no  difference;    (6)  25  lbs.'  wt.;  difference  of 
2|-  lbs.'  wt. 
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Absolute  units,  of  force,  217  ;  of 
work,  261. 

Acceleration,  191  ;  due  to 
gravity,  206,  310;  of  point 
moving  in  a  circle,  299. 

Algebraical  signs,  48. 
Aluminium  pulleys,  5. 
Angles,  measurement  of,  11. 
Angular  velocity,  297. 
Attvv'ood's  machine,  240. 

Balance,  175. 
Bending,  118. 
Bicycles,  questions  on,  133. 
Boat  sailing,  33. 

Centimetre-gram-second  system, 
218. 

Centre  of  Gravity,  or  ot  Mass, 
80  ;  of  perimeter  of  triangle, 
94  ;  of  remainder  of  body,  101  ; 
of  several  particles  in  one 
plane,  97  ;  of  uniform  paral- 

lelogram, 93  ;  of  uniform  tri- 
angle, 93. 

Centre  of  Parallel  Forces,  73. 
Centrifugal  force,  302. 
Centripetal  force,  302, 
Centroid,  95. 
Cheval-Vapeur,  126. 
Circular  measure  of  angles,  296. 
Collision,  energy  after,  279. 
Combined  C.G.  of  several  bodies, 

85. 
Component,  23. 
Composition,  of  accelerations,290. 

Composition,  of  forces,  23. 
, ,  of  velocities,  290. 

Compound  Pendulum,  310. 
Compression,  116. 
Conditions  for   equilibrium,   14,. 

39,  46,  60. 
Connected  bodies,  229. 
Conservation  of  energy,  274. 
Couple,  73. 

Density,  90. 
Derrick,  164. 
Differential  Pulley,  158. 

Windlass,  164. 
Double  weighing,  177. 
Dynamical  Equations,  273. 
Dynamical  measure  of  force,  217. 

weight,  225. 

Dyne,  218. 

Effective  power,  131. 
Efficiency,  137. 
Elasticity,  114. 
Energy,  126. 

,,        of  fall  of  water,  128. 
,.        of  pendulum,  277. 

Equilibrant,  8. 
Equilibrium,  2. 

States  of,  105. 

Erg,  261. 
Evidence    for   Newton's    Laws, 215. 

Foot-poundal,  261. 
Foot-pound-second  system,  218. 
Force,  1. 

331 
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Forces,  definite  in  magnitude,  4. 
Force,  measurement  of,  6. 

,,       transmissibility  of,  3. 
Fundamental  units,  219. 

Gram,  6. 
Graphic  representation  of  forces, 

6. 
,,  ,,         moment,  47. 

Hydrostatic  pressure,  119. 

Impulse,  252. 
Inclined  plane,  144. 
Independence  of  motions,  294. 
Indicated  power,  131. 
Inertia,  213. 

Jib  and  Tie,  31. 
Joints,  smooth,  26. 

Kinematical  Equations,  197. 
Kinetic  energy,  260. 

Lamina,  92. 
Lever,  139. 
Limiting  value,  190. 
Limit  of  Elasticity,  115. 

Machines,  136. 
Mass,  89. 
Mechanical  advantage,  137 
Moment  of  couple,  74. 
Moment  of  force,  45,  62. 
Momentum,  216. 

Negative  work,  124. 

Newton's  First  Law  of  Motion, 
215 ;  Second  Law  of  Motion, 
216;  Third  Law  of  Motion, 
253. 

Oscillation,  306. 

Parallel  forces,  49,  52,  58. 
Parallelogram  of  forces,  8. 
Pendulum,  motion  of,  309. 
Perpetual  motion,  276. 
Pile-Driver,  280. 

Polygon  of  forces,  39. 
Potential  energy,  273. 
Pound,  6. 
Poundal,  217. 
Power,  125. 
Protractor,  11. 
Pulley,  151. 

Relative  velocity  and   accelera- 
tion, 2S8. 

Requisites  of  balance,  178. 
Resolution  of  forces,  23. 
Resultant,  8. 
Rotation  of  earth,  312. 
Rotative  tendency  of  force,  43. 

Screw,  167. 

Seconds'  pendulum,  314. 
Sensitiveness  of  balance,  178. 
Signs  in  kinematical  equations, 

194. 

Simple  harmonic  motion,  307. 
Simple  pendulum,  306. 
Simple  triangles,  17. 
Smooth  surfaces,  action  of,  36. 
Specific  gravity,  91. 
Specification,  complete,  of  force, 

7. 

Speed,  297. 
Spiral  spring,  experiment  with, 

5. Stability  of  balance,  178. 
States  of  matter,  113. 
Steelyard,  common,  182. 

Danish,  185. 
Strain,  115. 
Stress,  27,  115. 

Symmetry,  principle  of,  21. 
Systems  of  pulleys,  153,  154. 

Tension,  4. 
Toothed  wheels,  170. 
Translative  tendency  of  force,  43. 
Triangle  of  forces,  14. 

,,  velocities,  290. 
Triangles,  simple,  17. 
Twisting,  119. 

Uniform  circular  motion,  296. 
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Unit  of  work,  125. 

Variation  in  weight,  313. 
Velocity,  188. 
Velocity  ratio,  138. 

Weight,  6,  90. 
Weights,  proportional  to  masses, 

226. 

Wheel  and  Axle,  162. 
Winch,  172. 
Windlass,  163. 
Work,  122 ;  done  against  gravity, 

127  ;  done  by  steam  pressure, 
132  ;  done  in  stretching  a  rod 
or  wire,  128  ;  principle  applied 
to  machines,  141. 

Young's  modulus,  114. 
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Test  Papers  in  Practical  Plane  and  Solid  Geometry.  Elementary 
Stage.    By  George  Grace,  B.Sc.  (Lond.).      24  Tests  printed  on  Cartridge  Paper. 
2s. 

III.    BUILDING    CONSTRUCTION. 

Building  Construction  for  Beginners.  Adapted  to  the  Elementary  Stage  ot 
the  South  Kensington  Syllabus.  By  J.  W.  Riley,  Rochdale  Technical  School. 
2s.  6d. 

V.     MATHEMATICS. 

An  Elementary  Course  of  Mathematics.  Comprising  Arithmetic,  Algebra, 
and  Euclid.  Adapted  to  the  Elementary  Stage  of  the  South  Kensington  Syllabus. 
By  H.  S.  Hall,  M.A.,  and  F.  H.  Stevens,  M.A.,  Masters  of  the  Military  Side, 
Clifton  College.    2s.  6d. 

Graduated  Test  Papers  in  Elementary  Mathematics.  Adapted  to  the 
Elementary  Stage  of  the  South  Kensington  Syllabus.  By  Walter  J.  Wood,  B.A. Is. 

Elementary  Practical  Mathematics.  Adapted  to  the  South  Kensington 
Syllabus.    By  V.  Castle,  M.I.M.E.     3s.  6rf. 

VI.     THEORETICAL    MECHANICS. 

Elementary  Mechanics  of  Solids.  By  W.  T.  A.  Emtage,  M.A.,  Director  of 
Public  Instruction  in  Mauritius.     2s.  6d. 

Mechanics  for  Beginners.  By  W.  Gallatly,  B.A.  2.s.  (od.  Adapted  to  the 
Elementary  Stage  of  the  South  Kensington  Syllabus. 

Mechanics  for  Beginners.  By  Rev.  J.  B.  Lock,  M.A.  Part  I.  Mechanics  and 
Solids.  2s.  6d.  Adapted  to  the  Elementary  Stage  of  the  South  Kensington. 
Syllabus. 

Hydrostatics  for  Beginners.    ByF.  W.  Sanderson,  M.A.     2s.  &d. 

VII.    APPLIED    MECHANICS. 

Lessons  in  Applied  Mechanics.  By  Professor  J.  H.  Cotterill,  F.R.S.,  and 
J.  H.  Slade.    5s.  6d. 
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VIII.    SOUND,    LIGHT,    AND    HEAT. 

Elementary  Lessons  in  Heat,  Ligtit,  and   Sound.     By  D.  E.  Jones, 
b,     B.Sc,    Inspector  of  Science  Schools  under  the  Science  and  Art  Department. 

Adapted  to  the  Elementary  Stage  of  the  South  Kensington  Syllabus.    2s.. 6d. 

Heat  for  Advanced  Students.  Adapted  to  Advanced  Stage  of  South 
Kensington  Syllabus..    By  E.  Edser,  A.R.C.Sc.    4s.  6d. 

Light  for  Advanced  Students.    By  E.  Edser,  A.R.C.Sc.        [In  Preparation. 

Elementary  Physics.  By  Balfour  Stewart,  F.R.S.  New  Edition,  1895, 
thoroughly  Revised.    4s.  6d.    Questions,  2s. 

IX.     MAGNETISM  AND  ELECTRICITY. 

Electricity  and  MHgnetism  for  Beginners.  Adapted  to  the  Elementary 
Stage  of  the  South  Kensington  Syllabus.     By  F.  W.  Sanderson,  M.A.     2s.  Gd. 

Magnetism  and  Electricity  for  Beginners.  Adapted  to  the  Elementary 
Stage  of  the  South  Kensington  Syllabus.  By  H.  E.  Hadley,  B.Sc.  (Lend.). 
2s.  M. 

Elementary  Lessons  in  Electricity  and  Magnetism.  By  Prof.  Silvanus 
P.  Thompson,  F.R.S.    New  Edition,  19C0.    4s.  6d. 

X.  and  XI.    CHEMISTRY. 

I NORG ANIC  CHEMISTRY— THEORETICAL. 

Chemistry  for  Beginners.  Adapted  to  the  Elementary  Stage  of  the  South 
Kensington  Syllabus.  By  Sir  Henry  Roscoe,  F.R.S.,  Assisted  by  J.  Lunt,  B.Sc. 
New  Edition,  revised.     2s.  Gd. 

The  Elements  of  Chemistry.  Adapted  to  the  South  Kensington  Syllabus. 
By  Prof.  Ira  Remsen.     2s.  Gd. 

Inorganic  Chemistry  for  Advanced  Students.  By  Sir  H.  E.  Roscoe, 
F.R.S.,  and  Dr.  A.  Harden.     4s.  Gd. 

Chemical  Problems.    By  Prof.  T.  E.  Thorpe,  F.R.S.    With  Ksy,  2s. 

Chemical  Arithmetic.     By  S.  Lupton,  M.A.     With  1200  Problems.    4s.  Gd. 

Inorganic  Chemistry.    By  Prof.  Ira  Remsen.    Gs.  Gd. 

INORGANIC  CHEMISTRY— PRACTICAL. 

Chemistry  for  Organised  Schools  of  Science.  By  S.  Parrish,  B.Sc, 
A.R.C.S.  (Lond.),  with  Introduction  by  Dr.  Forsyth.     2s.  Gd. 

Practical  Inorganic  Chemistry.  By  G.  S.  Turpin,  M.A.,  D.Sc.  Adapted  to 
the  Elementary  Stage  of  the  South  Kensington  Syllabus,  and  to  the  Syllabus  for 
Organised  Science  Schools.     2s.  Gd. 

Practical  Inorganic  Chemistry  for  Advanced  Students.  By  Chapman 
Jones,  F.I.C,  F.C.S.     2s.  Gd. 

The  Junior  Course  of  Practical  Chemistry.    By  F.  Jones,  F.C.S.    2s.  Gd. 
The  New  Edition   of  this  book  covers  the  Syllabus  of  the  South  Kensington 
Examination. 

ORGANIC   CHEMISTRY. 

Organic  Chemistry  for  Beginners.  By  G.  S.  Turpin,  M.A.,  D.Sc.  Adapted 
to  the  South  Kensington  Syllabus.    2s.  6d!. 

Organic  Chemistry.    By  Prof.  Ira  Remsen.    6s.  Gd. 

Course  of  Practical  Organic  Chemistry.  By  Dr.  J.  B.  Cohen,  Ph.D. 
2s.  6d. 
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XII.    GEOLOGY. 

Geology  for  Beginners.     By  W.   W.  Watts,  M.A.,   F.G.S.     Adapted  to  the 
Elementary  Stage  of  the  South  Kensington  Syllabus.    2*\  ()c?. 

XIV.     HUMAN  PHYSIOLOGY. 

Physiology  for  Beginners.      By  Sir  Michael  Foster  and  Dr.  L.  E.  Shore. 
Adapted  to  the  Elementary  Stage  of  the  South  Kensington  Syllabus.    2s.  Qd. 

Physiology  for  Advanced  Students.     Adapted  to  the  Advanced  Stage  of 
the  South  Kensington  Syllabus.     By  A.  Stanley  Kent,  M.A.  (Oxon.), 

[In  J'repamtion. 
Lessons  in  Elementary  Physiology.     By  the  Right  Hon.  T.  H.  Huxley, 

F.R.S.     4s.  6fL    Questions,  Is.  6(L 

XVII.    BOTANY. 

Botany    for    Beginners.      Adapted  to  the  Elementary  Stage   of  the   South 
Kensington  Syllaous.    By  Ernest  Evans,  Burnley  Technical  School.    25.  M. 

XIX.    METALLURGY. 

A  Text-Book  of  Elementary  Metallurgy.    By  A.  H.  Hiorns,  Principal  of 
the  School  of  Metallurgy,  Birmingham  and  Midland  Institute.    3s.    Que.stions,  Is. 

XXIII.     PHYSIOGRAPHY. 

Experimental  Science  (Section  I.  Physiography).     By  Prof.  R.    A. 
Gregory  and  A.  T,  Simmons,  B.Sc.    2s.  6rf. 

Physiography  for  Beginners.    By  A.  T.  Simmons,  B.Sc.    2s.  6d.    Adapted  to 
the  Elementary  Stage  of  the  South  Kensington  Syllabus. 

Physiography  for  Advanced  Students.     By  A.  T.  Simmons,  B.Sc.     4s.  6d. 
Elementary   Lessons   in   Astronomy.     By  Sir  Nobman  Lockyer.     New 

Edition.    5s.  (id.    This  book  contains  all  the  Astronomy  required  for  the  Advanced 
and  Honours. 

XXIV.    THE   PRINCIPLES   OF  AGRICULTURE. 

Agriculture  for  Beginners.    Adapted  to  the  Elementary  Stage  of  the  South 
Kensington  Syllabus.    By  A.  J.  Cooper,  Harris  Institute,  Preston.  [In  preparation. 

Elementary  Lessons  in  the  Science  of  Agricultural  Practice.    By 
H.  Tanner,  F.C.S.     3s.  QcL 

XXV.    HYGIENE. 

Hygiene  for  Beginners.    By  E.  S.  Reynolds,  M.D.  Adapted  to  the  Elementary 
Stage  of  the  South  Kensington  Syllabus.    2s.  6d. 

Handbook  of  Public  Health  and  Demography.    By  E.  F.  Willou9hbv 
M.B.    New  and  Revised  Edition.    4s.  (5d. 

MACMILLAN    AND    CO.,   Ltd.,   LONDON 



BOOKS    FOR 

SCHOOLS   OF   SCIENCE 

ELEMENTARY    PHYSICS. 

Exercises  in  Practical  Physics  for  Scliools  of  Science.    By  Prof.  R.  A. 
Gregory  and  A.  T.  Simmons,  B.Sc.    Part  I.     First  Year's  Course.    2s.    Part  II. 
Second  Year's  Course.     2s. 

An  Introduction  to  Practical  Physic^.    By  D.  Rintoul,  M.A.    2s.  6d. 

An  Exercise  Book  of  Elementary  Practical  Physics.    By  Prof.  R.  A. 
Gregory.    Fcap.  4to.    2s.  6d. 

Elementary  Course   of  Practical    Science.    Part  I.    By  Hugh  Gordon, 
M.A  ,  Inspector  of  Science  Schools,  Science  and  Art  Department.     Is. 

Practical  Lessons  in  Physical  Measurement.    By  A.  Earl.    5s. 

A  Primer  of  Physics.    By  Prof.  Balfour  Stewart.    Is. 

Elementary  Physics.    By  Prof.  Balfour  Stewart.    As.Qd.    Questions.    2s. 

Elements  of  Physics.    By  C.  E.  Fessenden.     I.  Matter  and  its  Properties. 
II.  Kinematics.    III.  Dynamics.     IV.  Heat.     3s. 

A  Graduated  Course  of  Natural  Science.     By  B.  Loewv.     Part  I.,  2s. 
Part  II.,  2s.  6rf. 

ELEMENTARY    CHEMISTRY— THEORETICAL. 

Chemistry  for  Beginners.    By  Sir  Henry  Roscoe,  F.R.S.,  and  J.  Lunt,  B.Sc. 
2s.  6d. 

The  Elements  of  Chemistry.    By  Prof.  Ira  Remsen.    New  Edition.     2s.  6d. 

ELEMENTARY    CHEMISTRY— PRACTICAL. 

Elementary  Chemistry  for  Schools  of  Science  and  Higher  Grade 
Schools.  By  S.  Parrish,  B.Sc,  Central  Higher  Grade  School,  Leeds.  With 
Introduction  by  Dr.  Forsyth.     2s.  6d. 

Practical  Inorganic  Chemistry.    By  G.  S.  Turpin,  M.A.,  D.Sc.    2s.  6i. 

An  Introduction  to  the  Study  of  Chemistry.  By  W.  H.  Perkin,  JuK., 
Ph.D.,  F.R.S.,  and  Bevan  Lean,  D.Sc.    2s.  6d. 

The  Junior  Course  of  Practical  Inorganic  Chemistry.  By  F.  Jones, 
F.C.S.     2s.  6d. 

A  Primer  of  Chemistry.    By  Sir  Henry  Koscoe,  F.R.S,    is. 
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